CCN蛋白家族是一组细胞间基质蛋白,由CCN1-6六名成员组成。除CCN5缺乏CT模块外,CCN家族蛋白均包含4个保守的串联模块:1)胰岛素样生长因子结合蛋白模块(IGFBP);2)血管性血友病因子C型重复模块(VWC);3)血小板反应蛋白1型重复模块(TSP-1);以及4)含有半胱氨酸羧基端结构的模块(CT)。典型的CCN蛋白由5个外显子编码。CCN蛋白氨基酸同源性为60%,共有38个半胱氨酸残基,这些残基在位置和数量上都严格保守。由于信号肽的存在,CCN蛋白的特点是在细胞质中表达,并以旁分泌的形式在外界环境中积累。它们的四个离散功能域决定了它们相互作用的结合配体的类型,包括不同的整合素,HSPGs、IGFs、TGFb和VEGF等,导致全长CCN蛋白具有多种生物学功能。图1 CCN蛋白结构[1]各种刺激诱导的CCN蛋白在各种细胞中被激活,可直接与细胞表面整合素、生长因子、细胞因子等ECM蛋白相互作用,这些反应诱导肌成纤维细胞的生长和衰老,导致基质重塑。图2 CCN蛋白在纤维化中的作用[2]CCN家族在生物反应和疾病中的几个主要作用:1)伤口愈合和纤维化疾病:纤维化是组织再生过程中CCN家族网络失衡的结果。促纤维化因子TGF-β通过诱导CCN1、CCN2、CCN4的表达,抑制CCN3的表达,在心脏纤维化中发挥促纤维化作用或诱导真皮成纤维细胞衰老(CCN1);2)炎症:CCN1、CCN2、CCN4被TGF-β上调,而CCN3被相同的细胞因子以相反的方式调节;3)恶性肿瘤:肿瘤微环境(TME)增加了肿瘤的复杂性,CCN蛋白可能是一个平衡TME的潜在靶点。CCN蛋白根据肿瘤类型的不同,在肿瘤发生和发展过程中起到正向或负向作用。 表1 CCN1-6在泛癌中表达水平变化[1]大部分情况下,CCN1、CCN2、CCN4通常与促进细胞增殖和肿瘤生长有关,CCN3、CCN5、CCN6则与抑制这些过程有关。而CCN蛋白最终的生物学特性可能依赖于不同的组合,在肿瘤治疗中应作用于不同组合的CCN蛋白来重新平衡TME。下面我们将重点介绍一下促肿瘤生长的CCN1、CCN2、CCN4。CCN1/CYR61肿瘤的发生发展改变了细胞外基质的组成和物理性质。基质刚度的增加对肿瘤生长和转移有深远的影响。CCN1又称富半胱氨酸蛋白61(cysteine-rich 61, CYR61),其在内皮细胞中受刚度的高度调控。在体外,刚度诱导的CCN1激活β-连环蛋白核转位和信号转导,以上调内皮细胞表面的N-钙粘蛋白水平,促进N-钙粘蛋白依赖的癌细胞-内皮相互作用。而敲除内皮细胞中的CCN1可以抑制黑色素瘤细胞与血管的结合,抑制瘤细胞通过血管转移过程。因此,靶向硬化诱导的血管改变(如CCN1)是一种潜在的、但尚未被重视的损害转移的机制。图3 肿瘤血管系统中CCN1的作用模式[3]CCN2/CTGFCCN2又称结缔组织生长因子(Connective Tissue Growth Factor,CTGF),是一种促纤维化介质。在大多数纤维性疾病中,生化或机械刺激诱导产生的CCN2与TGF-β协同促进成纤维细胞向肌成纤维细胞的表型转化。CCN2还与恶性肿瘤的侵袭有关,CCN2由肿瘤细胞产生并作用于自身,主要抑制其侵袭性表型。但由于CCN2可以通过旁分泌的方式激活血管内皮细胞和破骨细胞祖细胞,促进血管生成和骨吸收,从而又促进了肿瘤的侵袭和转移。因此,CCN2既可以成为一个促进组织再生的潜在的治疗工具,又可以成为对抗纤维化及其相关疾病,以及肿瘤转移的重要靶点。图4 CCN2在病理纤维化中的分子作用[4]CCN4/WISP-1CCN4又称Wnt1诱导的信号通路蛋白(Wnt1-Inducible Signaling pathway Proteins, WISP-1),由肿瘤细胞和基质成纤维细胞产生和分泌(蓝色箭头)。然后,分泌的CCN4可通过旁分泌和自分泌两种机制对肿瘤细胞和血管内皮细胞发挥作用(红色箭头)。CCN4能够结合到细胞外基质蛋白(如纤维连接蛋白;绿色形状),以及细胞膜上的整合素(蓝色形状),从而调节细胞与细胞外基质的相互作用。图5 CCN4作为肿瘤微环境中的自分泌和旁分泌介质[5]最新研究进展CCN1:目前针对CCN1靶点开发的药物主要是小分子药物,进展最快的是Asahi Kasei等公司的Zoledronate/Zoledronic acid monohydrate,该药物已在2000年上市,用于治疗癌症,骨关节炎,疼痛等多种疾病。目前只有一种针对CCN1的抗体药物,是罗氏公司的Mab 420/MOR-420,目前处于生物测试阶段,且并未处于活跃状态。CCN2:目前针对CCN2靶点,开发药物进展最快的是FibroGen,该公司的Pamrevlumab用于抑制结缔组织生长因子(CTGF)的活性,目前正在推进临床III期试验,适应症包括:胰腺癌、杜氏肌营养不良(DMD)和特发性肺纤维化(IPF)。同时还在进行治疗急性 COVID-19 住院患者的 II 期临床试验。该药已在美国获得孤儿药资格,用于治疗特发性肺纤维化、胰腺癌和杜氏肌营养不良症。在欧盟还指定了治疗杜氏肌营养不良症的孤儿药资格。CCN4:目前尚未有该靶点的临床在研药物。B-hCCN1 mice基本信息mRNA表达分析小鼠CCN1的mRNA仅在野生小鼠(+/+)的卵巢中检测到。人CCN1的mRNA仅在纯合B-hCCN1小鼠(H/H)中检测到,在野生小鼠中未检测到。蛋白表达分析利用western blot分析纯合B-hCCN1小鼠中种属特异性CCN1的表达。取野生C57BL/6小鼠(+/+)和纯合B-hCCN1小鼠(H/H)的脾组织,用抗CCN1抗体进行western blot分析。因为该抗体与人CCN1和小鼠CCN1有交叉反应,CCN1在野生小鼠和纯合B-hCCN1小鼠中均可检测到。B-hCCN2 mice基本信息:mRNA表达分析:小鼠CCN2的mRNA仅在野生小鼠(+/+)的肾脏中检测到。人CCN2的mRNA仅在纯合B-hCCN2小鼠(H/H)中检测到,在野生小鼠中未检测到。蛋白表达分析:利用western blot分析纯合B-hCCN2小鼠中种属特异性CCN2的表达。取野生C57BL/6小鼠(+/+)和纯合B-hCCN2小鼠(H/H)的肾组织,用抗CCN2抗体进行western blot分析。因为该抗体与人CCN2和小鼠CCN2有交叉反应,CCN2在野生小鼠和纯合B-hCCN2小鼠中均可检测到。体内药效:抗人CCN2抗体可以抑制博来霉素诱导的B-hCCN2小鼠肺部的胶原蛋白沉积。将B-hCCN2小鼠分为3组:生理盐水对照组,博来霉素处理的纤维化组以及博来霉素处理的纤维化+Pamrevlumab治疗组。(A)Pamrevlumab治疗能够改善博来霉素诱导的B-hCCN2小鼠的体重减轻。该模型中的纤维化通过总肺羟脯氨酸(HYP)的标准测量值进行评分。(B)与生理盐水对照组相比,博来霉素的诱导增加了HYP含量,而用Pamrevlumab治疗可以降低肺HYP含量。B-hCCN4 mice基本信息:mRNA表达分析:小鼠CCN4的mRNA仅在野生小鼠(+/+)的卵巢中检测到。人CCN4的mRNA仅在纯合B-hCCN4小鼠(H/H)中检测到,在野生小鼠中未检测到。蛋白表达分析:利用western blot分析纯合B-hCCN4小鼠中种属特异性CCN4的表达。取野生C57BL/6小鼠(+/+)和纯合B-hCCN4小鼠(H/H)的肾脏和脾脏组织,用抗CCN4抗体进行western blot分析。因为该抗体与人CCN4和小鼠CCN4有交叉反应,CCN4在野生小鼠和纯合B-hCCN4小鼠中均可检测到。参考文献[1] Jia Q, et al. CCN Family Proteins in Cancer: Insight Into Their Structures and Coordination Role in Tumor Microenvironment. Front Genet. 2021 Mar 23;12:649387. [2] Sun, C., et al. Emerging role of CCN family proteins in fibrosis. Journal of cellular physiology. 2021 Jun;236(6):4195-4206. [3]Reid SE, et al. Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium. EMBO J. 2017 Aug 15;36(16):2373-2389. [4] Kubota S, et al. Cellular and molecular actions of CCN2/CTGF and its role under physiological and pathological conditions. Clin Sci (Lond). 2015 Feb;128(3):181-96. [5] Nivison MP, et al. The role of CCN4/WISP-1 in the cancerous phenotype. Cancer Manag Res. 2018 Aug 27;10:2893-2903.
肿瘤相关髓系细胞(tumor-associated myeloid cells, TAMC)是肿瘤微环境(TME)中重要的组成部分,具有异质性,在肿瘤微环境中可以发挥不同,甚至是相反的作用,如免疫抑制或免疫刺激。靶向TAMCs作为单一疗法或与化疗、免疫疗法联合应用的研究正在火热进行中。深入研究TAMCs在肿瘤中的功能和作用机制将有助于发现新的治疗方法。研究最多的肿瘤相关髓系细胞包括单核细胞、肿瘤相关巨噬细胞(TAMs)、树突状细胞(DC)、癌症相关循环中性粒细胞、肿瘤相关中性粒细胞(TANs)和骨髓来源抑制细胞(MDSCs)。TAMC的主要功能是调节淋巴细胞行为进而形成免疫刺激或免疫抑制性TME,从而抑制或促进包括肿瘤细胞的恶性克隆进化、生长、存活、侵袭、播散和转移、血管生成在内的各个肿瘤发展阶段。单核细胞单核细胞是一组异质性的单核吞噬细胞,分为经典型单核细胞、中间型单核细胞和非经典型单核细胞,在炎症期间循环外周血中发挥先天免疫功能。肿瘤发展的不同阶段,不同的单核细胞亚群表现出不同甚至相反的作用。从机制上讲,中间型单核细胞经肿瘤细胞刺激后,促炎细胞因子TNF- α和白细胞介素12(IL-12)的产生增加,而抗炎细胞因子白细胞介素10(IL-10)的产生减少,并对肿瘤细胞产生直接的细胞毒性,促进肿瘤细胞凋亡。经典型单核细胞产生VEGF,促进肿瘤细胞外渗,导致转移。相比之下,非经典型单核细胞在吞噬肿瘤细胞衍生微粒后被激活,从而减少肿瘤细胞的转移。肿瘤中单核细胞的功能肿瘤相关巨噬细胞(TAMs)巨噬细胞作为单核吞噬细胞系统,在组织稳态和炎症中起着关键作用。巨噬细胞分为两个主要亚群,M1和M2巨噬细胞,在功能上是异质的。M1巨噬细胞是对抗微生物感染的第一道防线,具有很强的抗原呈递能力诱导强烈的Th1反应。在脂多糖(LPS)、IFN-γ和粒细胞-巨噬细胞刺激因子(GM-CSF)的作用下,M1巨噬细胞经历经典激活,并优先分泌抗菌分子和促炎细胞因子。M2巨噬细胞在限制免疫反应、诱导血管生成和组织修复方面起着关键作用。在白细胞介素4(IL-4)、白细胞介素13(IL- 13)、IL-10和CSF-1的作用下,M2巨噬细胞发生选择性激活并优先分泌抗炎细胞因子。TAMs在肿瘤中的作用树突状细胞(DC)DC是最有效的抗原呈递细胞(APCs),连接先天免疫和适应性免疫,在生理条件下具有表型和功能异质性。在对微生物感染的反应中,细胞外微生物蛋白通常被成熟DC吞噬或内吞,并通过MHC II分子呈递给CD4+ T细胞。相比之下,胞质微生物蛋白通常通过MHC I分子呈现给CD8+ T细胞。TME浸润的DC包括不同发育阶段的树突状细胞亚群,这些肿瘤相关树突状细胞根据不同的细胞亚群和肿瘤分期,发挥免疫刺激或免疫抑制作用。DC在肿瘤中的作用粒细胞粒细胞可大致分为癌症相关循环中性粒细胞、肿瘤相关中性粒细胞(TANs)以及其他中性粒细胞。癌症相关循环中性粒细胞这些与癌症相关的循环中性粒细胞由功能异质性亚群组成,是循环外周血的多形核吞噬细胞,具有对抗微生物病原体的先天免疫功能。在癌症患者中,特别是在晚期和转移后,循环中性粒细胞数量增加,高中性粒细胞与淋巴细胞比率(NLR)与侵袭性癌症相关。肿瘤相关中性粒细胞(TANs)研究表明TME中的TANs可促进肿瘤细胞增殖、外渗和迁移,在肿瘤发展和转移中起着关键作用。TANs可释放弹性蛋白酶等颗粒内容物,促进肿瘤增殖和侵袭细胞;分泌IL-1β和MPPs促进肿瘤细胞外渗到转移前壁龛,从而促进癌细胞的扩散;激活TLR通路,促进肿瘤细胞的迁移、黏附、侵袭和转移。除促肿瘤作用外,TANs还被证明通过产生ROS和TRAIL介导肿瘤细胞的细胞毒性。研究也表明TANs与TME中的淋巴细胞相互作用并调节其功能。其他粒细胞除了嗜中性粒细胞(neutrophilic),其他类型的粒细胞,如嗜酸性粒细胞(eosinophils)和嗜碱性粒细胞(basophils),对肿瘤也有影响。研究表明嗜酸性粒细胞具有抗肿瘤活性,对各种癌细胞都表现出直接的或间接的细胞毒性,从而抑制肿瘤生长。中性粒细胞在肿瘤中的作用骨髓来源抑制细胞(MDSCs)MDSCs是一组异质性的髓系祖细胞和处于不同发育阶段的未成熟髓系细胞,它们在血管中循环。在感染时,MDSCs迅速扩张并分化为粒细胞、单核细胞、巨噬细胞和树突状细胞,在调节免疫反应和组织修复中发挥重要作用。肿瘤相关的MDSC由两个主要亚群体组成,粒细胞骨髓来源抑制细胞(GrMDSCs)和单核细胞骨髓来源抑制细胞(MoMDSCs)。GrMDSCs在表型和形态上与中性粒细胞相似,MoMDSCs在表型和形态上与单核细胞相似,研究表明GrMDSCs和MoMDSCs均参与T细胞介导的免疫抑制。MDSCs及其亚群在肿瘤中的作用髓系细胞在肿瘤免疫治疗的研究中的作用是毋庸置疑的,调节这些髓系细胞的发育、成熟和功能有助于发现新的肿瘤免疫治疗策略。然而,由于各种可互换亚群的复杂性和可塑性,这些髓系细胞执行重叠或相反的功能,目前控制TAMCs行为的分子机制在很大程度上尚不清楚。为进一步阐明髓系细胞各亚群在不同癌症中的功能,并确定其促肿瘤和抗肿瘤活性相关的分子机制,百奥动物自主研发一些列髓系靶点人源化小鼠,助力深入了解髓系细胞的复杂性,并设计新的肿瘤靶向治疗方法。B-hTREM2 mice(C) 基本信息体内药效抗人TREM2抗体在B-hTREM2(C)小鼠中的抗肿瘤活性。纯合子B-hTREM2(C)小鼠(雌性,10周龄,n=6)小鼠皮下接种小鼠乳腺癌EMT-6细胞。当肿瘤体积达到约50-80 mm3时,对小鼠进行分组,然后使用抗人TREM2抗体进行治疗。如图A所示,抗人TREM2抗体在B-hTREM2(C)小鼠中有效地控制肿瘤生长,证实B-hTREM2(C)小鼠模型是抗人TREM2抗体临床前体内药效评估的优质模型。数值以平均值±SEM表示。B-hCD36 mice基本信息体内药效抗小鼠PD-1抗体和抗人CD36抗体联合治疗在B-hCD36小鼠中的抗肿瘤活性。纯合子B-hCD36小鼠(雌性,7周龄,n=5)小鼠皮下接种小鼠结肠癌MC38细胞。当肿瘤体积达到约60 mm3时,对小鼠进行分组,然后使用抗体进行治疗。如图A所示,抗体组合在B-hCD36小鼠中有效地控制肿瘤生长,证实B-hCD36小鼠模式是抗CD36抗体临床前体内药效评估的优质模型。数据来自合作者,数值以平均值±SEM表示。B-hPD-1/hPD-L1/hVSIR mice基本信息蛋白表达分析通过流式细胞术分析野生型C57BL/6小鼠和纯合子B-hPD-1/hPD-L1/hVSIR小鼠中种属特异性PD-1和PD-L1的表达。用抗CD3ε抗体体内刺激野生型C57BL/6小鼠和纯合子B-hPD-1/hPD-L1/hVSIR小鼠,收集脾细胞并进行流式分析。结果显示:小鼠PD-1和PD-L1在野生型C57BL/6小鼠中检测到。人PD-1和PD-L1只在纯合子B-hPD-1/hPD-L1/hVSIR小鼠中检测到,而在野生型C57BL/6小鼠中检测不到。通过流式细胞术分析野生型C57BL/6小鼠和纯合子B-hPD-1/hPD-L1/hVSIR小鼠中种属特异性VSIR的表达。取野生型C57BL/6小鼠和纯合子B-hPD-1/hPD-L1/hVSIR小鼠脾细胞进行流式分析。结果显示:小鼠VSIR仅在野生型C57BL/6小鼠中检测到。人VSIR只在纯合子B-hPD-1/hPD-L1/hVSIR小鼠中检测到,而在野生型C57BL/6小鼠中检测不到。髓系靶点人源化小鼠列表参考资料:1. Aixia Dou, Jing Fan. Heterogeneous Myeloid Cells in Tumors. Cancers (Basel). 2021 Aug; 13(15): 3772.2. Sijin Cheng, Ziyi Li, et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell. 2021Feb; 184, 792–809.
转化生长因子β(TGFβ)是一种多功能的细胞因子,对细胞增殖、分化、粘附、迁移和凋亡具有多重功能。多种类型细胞均可分泌,最早从人血小板中鉴定。哺乳动物中表达三种类型TGFβ:TGFβ1、TGFβ2和TGFβ3,每种由不同的基因编码,并通过结合相同的TGFβ受体发挥相应功能。其中TGFβ2和TGFβ3在胚胎发育中发挥重要作用,而TGFβ1则主要参与控制出生后的免疫反应[1]。三种TGFβ起初均表达为非活性蛋白复合物(SLC或LLC)。TGFβ1同型二聚体与潜伏相关肽(Latent Associated Peptide, LAP)(TGFβ1 N 端具有的长 20~30 个氨基酸的序列)形成的复合被称为小潜复合物 (Small Latent Complex, SLC)。在细胞外,SLC 与 潜伏TGFβ1结合蛋白(Latent TGFβ Binding Protein, LTBP)结合形成的复杂复合物被称为大潜复合物(Large Latent Complex, LLC)。TGFβ的活化有以下3种途径:1)SLC在胞外被蛋白酶水解;2)LLC被细胞外基质铆钉,进而由αβ整合素介导释放有活性的TGFβ;3)SLC被细胞表面的GARP铆钉,并由αβ整合素介导释放有活性的TGFβ。接下来,具有活性的TGFβ与TGFβRII二聚体结合,随后进一步与TGFβRI二聚体结合,形成四聚体,激活下游信号通路,调节基因表达。图1. TGFβ信号通路[2,3]稳态条件下,TGFβ1信号不仅调节多种组织细胞的生长、增殖和分化;也指导免疫系统的耐受和炎症抑制,尤其在胃肠道起重要作用。TGFβ1调节功能的多样性赋予了它在肿瘤发生和发展中亦正亦邪的双面性。在癌症发生早期,TGFβ是一个抑癌因子,可发挥细胞周期阻滞作用,阻断细胞从G1期进入S期,达到抑制肿瘤细胞增殖的作用。然而,随着炎症加剧,一些癌细胞可能会发生突变,使其对TGFβ信号通路不响应,或响应与凋亡脱钩、反变为促进癌细胞转移和定植。同时,肿瘤细胞亦可大量分泌TGFβ1发挥免疫抑制功能,抑制T、B淋巴细胞与NK细胞活化和分化,造成机体免疫功能障碍,使得肿瘤细胞免疫逃逸(图2)。图2. TGFβ的抑癌和促癌信号[2]针对TGFβ信号通路的在研药物主要包括配体抗体、配体陷阱(如bintrafusp alfa)、受配体抗体、小分子激酶抑制剂等,主要聚焦于肿瘤免疫疗法[4]。目前,处于临床阶段的TGFβ1配体抗体药物如下表所示:数据整理自Cortellis数据库为了更好的助力靶向TGFβ1的新药研发,百奥动物自主研发了TGFβ1人源化小鼠B-hTGFB1 mice,用于靶向TGFβ1药物的临床前药效评估。B-hTGFB1 mice 图3. RT-qPCR分析B-hTGFB1小鼠和野生型小鼠的TGFB1 mRNA的表达。B-hTGFB1小鼠中人TGFB1 mRNA表达量与野生型小鼠中的鼠TGFB1 mRNA表达量类似。这表明人TGFB1基因原位替换不影响TGFB1 mRNA的表达。图4. 利用流式细胞仪分析纯合B-hTGFB1小鼠和野生型小鼠的血小板中TGFB1蛋白的种属特异性表达。小鼠的TGFB1仅在野生型小鼠中被检测到,人TGFB1仅在纯合B-hTGFB1小鼠中检测到。脾脏中TGFB1蛋白的表达同样也具有种属特异性(数据未展示)。TGFB1人源化不影响脾脏、淋巴结、血液中白细胞各亚群比例(数据未展示)。图5. 抗体结合实验。从B-hTGFB1小鼠和野生型小鼠取血,用流式细胞术分析血小板人LAP的表达。SRK-181可特异性结合SLC并抑制TGFβ1活化[5]。于是,在SRK-181处理过的纯合B-hTGFB1小鼠和野生型小鼠中均能检测到人LAP的表达;而未处理的鼠中不能检测到人LAP的表达。(hLAP抗体可人鼠交叉识别。)图6. 抗鼠PD-1抗体和抗人TGFβ1抗体联用在B-hTGFB1小鼠中的抗肿瘤作用。(A)mPD-1和hTGFβ1抗体(自制)联用可抑制B-hTGFB1小鼠中MC38肿瘤的生长;(B)治疗期间的体重改变。数值为平均值±SEM。由图可见,抗鼠PD-1抗体和抗人TGFβ1抗体联用可有效控制B-hTGFB1小鼠中的肿瘤生长,说明B-hTGFB1小鼠是TGFβ1抗体药物临床前评估的有力模型。相关产品列表 品系货号B-hTGFB1 mice112245B-hTGFBR2 mice110874B-hGARP mice110102B-hGARP/hTGFB1 mice112241B-hLRRC33 mice110757B-Tgfβ1 cKO mice110164参考资料1. Stockis, J., Dedobbeleer, O. & Lucas, S. Role of GARP in the activation of latent TGF-β1. Molecular bioSystems 13, 1925-1935 (2017).2. Batlle, Eduard, and Joan Massagué. “Transforming Growth Factor-β Signaling in Immunity and Cancer.” Immunity vol. 50,4 (2019): 924-940. doi:10.1016/j.immuni.2019.03.0243. Kelly, Aoife et al. “Regulation of Innate and Adaptive Immunity by TGFβ.” Advances in immunology vol. 134 (2017): 137-233. doi:10.1016/bs.ai.2017.01.0014. Kim, Byung-Gyu et al. “Novel therapies emerging in oncology to target the TGF-β pathway.” Journal of hematology & oncology vol. 14,1 55. 6 Apr. 2021, doi:10.1186/s13045-021-01053-x5. Martin, Constance J et al. “Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape.” Science translational medicine vol. 12,536 (2020): eaay8456. doi:10.1126/scitranslmed.aay8456
医药生物行业生命科学领域产业链系列报告显示,随着科研发展与对新靶点的持续追求,基因修饰动物凭借可以精准满足用户需求的特点,正快速发展为模式动物市场主流产品。GMI 数据披露,2019 年全球基因修饰动物模型市场规模约为 100 亿美元,预计 2023 年将增至 141 亿美元,占动物模型服务市场近67%[1]。技术进步重塑市场格局,基因修饰模式动物地位日益凸显。相较于野生型的模式动物,基因修饰模式动物能够对目标基因开展功能缺失或功能获得的研究,达到人类生理或病理更精确的模拟,因此更适合探索研究人类基因功能和人类疾病致病机制,是目前行业重要的发展方向。这其中Cre工具鼠和疾病模型鼠亦扮演着举足轻重的角色。一起围观下百奥动物的蓝宝小家伙带来的好物分享吧~ 鼠界“爱德华”--Cre工具鼠系列INTRODUCTION基因敲除鼠常被用来研究基因的功能,但据研究报道,小鼠有超过30%的基因敲除后导致了胚胎致死或者出生后不久死亡[2],从而无法对该基因在体内发挥的生理功能进行更好的研究。为了解决这个问题,科学家发现了Cre/loxP系统。 1 什么是Cre/loxP系统?Cre-loxp 系统来自于P1 噬菌体,是噬菌体感染病毒实现寄生的“杀手锏”。 Cre重组酶(cyclization recombination enzyme),它是一种由343个氨基酸组成的单体蛋白,可以引发loxP位点的DNA 重组。loxP是一段长34bp的DNA序列,是Cre重组酶识别的位点,被称为loxP位点。Cre重组酶的调控方式有多种多样,有如特异性基因启动子调控的Cre(Promoter-regulated Cre)、配体或药物诱导的Cre(Inducible Cre)、荧光报告的Cre(Fluorescent Cre)以及同时被不同启动子调控的Cre(Split Cre,NCre 和CCre)等。不同调控方式的选择造就了不同的Cre工具鼠。 2 Cre/loxP系统在基因编辑大小鼠中的应用根据Cre-loxp 系统工作的原理,在基因编辑大小鼠中,分别制作Cre重组酶工具大小鼠和带有loxp位点的flox鼠,通过杂交可以实现组织特异性基因敲除,这样可以避免全身性敲除引起的纯合致死情况。你是不是也正在经历实验设计选不到合适Cre鼠的窘境?百奥动物自主开发了一系列Cre工具鼠,助力不同应用场景的科学研究。B-Pgr-iCre小鼠基本信息应用领域生殖系统功能研究表型分析ROSA26-CAG-LSL-tdTomato mice是公司自主研发并验证成功的tdTomato报告小鼠品系。在与Cre小鼠交配后,剔除stop元件,可表达tdTomato红色荧光蛋白。本实验方案利用B-Pgr-iCre mice与CAG-LSL-tdTomato报告小鼠交配,iCre重组酶可介导子代小鼠中表达Pgr的细胞删除LSL元件,表达tdTomato红色荧光蛋白,荧光显微镜下可观察到红色荧光信号,可证明表达Pgr的细胞成功表达iCre重组酶并介导基因重组功能。上图为小鼠不同器官中实验结果的显示,(a)代表小鼠的生殖系统,包括子宫、输卵管和卵巢。(b)代表小鼠的乳腺。IF 检测 tdTomato 红色荧光蛋白和绿色荧光标记 Pgr(progesterone) 的表达。纵轴代表不同基因型的小鼠,横轴代表不同的荧光标记。B-Pgr-iCre(Mut/+);CAG-tdTomato(Mut/+) 小鼠表现出明显的 tdTomato 红色荧光蛋白表达。B-Cdh5-iCreERT2 mice小鼠基本信息应用领域心血管系统,肿瘤和细胞分化机制研究表型分析ROSA26-CAG-LSL-tdTomato mice是公司自主研发并验证成功的tdTomato报告小鼠品系。在与Cre小鼠交配后,剔除stop元件,可表达tdTomato红色荧光蛋白。本次实验中B-Cdh5-iCreERT2 mice与ROSA26-CAG-LSL-tdTomato mice交配,可实现Cdh5-iCreERT2(Mut/+);CAG-LSL-tdTomato(Mut/+)双阳性小鼠在tamoxifen诱导下,在血管淋巴管内皮细胞特异性表达tdTomato红色荧光蛋白。上图为双阳性小鼠主要器官中 tdTomato 和 CD31 的免疫荧光图像。CD31是内皮标记物。(比例尺:25 μm)百奥动物Cre工具鼠产品列表向上滑动查看列表 高能“cosplay”--疾病模型鼠系列INTRODUCTION疾病动物模型是研究人类疾病机制、诊断预后标志物发现、药物筛选和评价等的重要支撑条件。利用基因工程技术对基因进行修饰,可建立敏感动物品系和与人类疾病相同的疾病模型进行药物筛选和药效研究,这类动物可培育为稳定遗传的品系,且具有特定的病理特征,已经成为药物快速筛选的重要手段。百奥动物建立了丰富的疾病模型资源,为疾病治疗药物评价提供稳定有效的模型资源,并能够基于此为广大合作伙伴提供符合国际水平的药理药效服务。血友病模型--B-F8 KO 小鼠F8又称AHF,FVIII(coagulation factor VIII),是位于X染色体上编码凝血因子VIII的基因,在外源性和内源性凝血途径中都不可或缺。它作为凝血因子IXa的辅助因子参与凝血过程,同时借助于Ca2 +和膜磷脂,形成复合物以激活X因子,并进行一系列后续的凝血反应。F8基因的缺失导致严重的凝血障碍,形成伴X染色体隐性遗传的A型血友病。F8基因敲除模型为血友病患者的药物筛选提供了重要的临床前借鉴意义。模型数据验证将实验动物随机分组,分别尾静脉注射给予生理盐水或1mg/kg诺其,给药30min后腹主动脉采血检测血凝指标:活化部分凝血活酶时间 APTT。结果显示:F8 KO小鼠APTT值远高于WT小鼠,给予重组人凝血因子VIIa后,APTT恢复至正常值。结果证明:B-F8 KO小鼠可以作为抗凝血药药效验证的有力工具。高血糖和肥胖症模型--B-ob/ob 小鼠瘦素(Leptin)是由肽链构成的肽类激素。主要由脂肪细胞分泌,其表达主要在白色脂肪组织。此外,在心肌、骨骼肌、胎盘、肺、乳腺上皮和胃黏膜等均有表达。在功能上能够有抑制食欲,增加能量消耗,抑制脂肪合成促进其分解。胰岛素可促进瘦素的分泌,反过来瘦素对胰岛素的合成、分泌发挥负反馈调节。ob是瘦素的编码基因,百奥动物利用基因编辑技术将ob基因2、3号外显子敲除制备的B-ob/ob小鼠,具有肥胖症和高血糖症状,是研究高血糖和肥胖症的有力模型。模型数据验证纯合B-ob/ob小鼠4周龄后体重和血糖(-/-)均持续高于对照组。抗人GCGR抗体药物crotedumab在B-ob/ob小鼠体内的药效。(A)B-ob/ob小鼠的体重变化。(B-C)非空腹血糖和空腹血糖测量。将8-10周龄的雄性B-ob/ob小鼠随机分为2组,每组6-7只。给药组第0天进行给药,第0、3、7天测定非空腹血糖,禁食6小时后测定空腹血糖。(D)Crotedumab可改善葡萄糖耐量。(E)血糖含量曲线下面积。小鼠在自由取水的条件下禁食6h,尾尖取血测定空腹血糖(0 min),腹腔注射葡萄糖2 g/kg,在指定时间测定血糖。(F-G)胰高血糖素和胰岛素测量。结果显示,crotedumab在禁食和非禁食状态下均具有降糖作用,同时能够改善B-ob/ob小鼠的葡萄糖耐量。百奥动物疾病模型鼠产品列表百奥动物可提供多种稳定优质的基因编辑自发疾病动物模型,如肿瘤模型鼠(B-p53 KO 小鼠,B-p53 KO大鼠),高血糖模型鼠(B-ob/ob小鼠),凝血模型鼠(B-F8 KO小鼠,B-F9 KO小鼠)等,提供客户用于相关研究。向上滑动查看产品列表意犹未尽?想要共享蓝宝的更多好物清单,欢迎扫描下方二维码查看或者来电咨询。参考资料:[1]https://mp.weixin.qq.com/s/rhhEFL5A9KhVKAULO29COw[2]Huimin Zhang, Qi Zheng, Ruby Yanru Chen-Tsai;Establishment of a Cre-rat resource for creating conditional and physiological relevant models of human diseases. Transgenic Res. 2021 Feb;30(1):91-104
多发性骨髓瘤(Multiple Myeloma, MM)是全球第二大常见的恶性血液肿瘤,始于骨髓中健康的浆细胞恶性增殖。在当前是一种较难治愈的疾病,大多数患者终将复发。据统计,2020年全球有超过17万人被诊断出患有多发性骨髓瘤,60岁以上老人属于该病的高发群体,发病年龄亦有呈年轻化的趋势。随着我国人口老龄化趋势上升,多发性骨髓瘤的防治负担将逐年加剧,成为危害人们身体健康的一大挑战。多发性骨髓瘤从癌前到有明显疾病症状的演变过程,在SMM阶段的早期发现和早期干预以及预防或治疗策略可能是提高这种复杂疾病治愈率的途径。[1] 左图:正常的骨髓 ,右图:多发性骨髓瘤;多发性骨髓瘤中可见大量恶性浆细胞,其特征是在细胞核附近的细胞质内有一个苍白的区域。[2]目前,针对MM的治疗药物有糖皮质激素、细胞毒性药物、免疫抑制剂、蛋白酶抑制剂、单抗和细胞疗法等。其中,免疫治疗已经在许多癌症领域被证明是革命性疗法,但由于MM存在免疫抑制微环境现象,影响了免疫治疗的疗效,导致其对MM的治疗进展较为缓慢。MM细胞与骨髓(BM)微环境之间的相互作用,对MM的发病起着关键作用,可通过诱导或分泌细胞因子促进肿瘤细胞生长、免疫逃逸及耐药,增加Treg细胞的数量,抑制效应T细胞的杀伤等。靶向特定肿瘤抗原或逆转具有免疫抑制作用的骨髓微环境的免疫疗法可以帮助改善MM的标准治疗方案。骨髓MM微环境中的抗骨髓瘤作用[3]细胞重定向BiAb和BiTE同时结合MM细胞上的骨髓瘤特异性抗原和T细胞上的CD3。MM抗原包括BCMA, CD38, CS1/SLAMF7, GPRC5D和FcRH5,如图示。BiAbs或自然杀伤细胞衔接器(NKCEs)也靶向自然杀伤(NK)细胞相关受体抗原(如CD16A, NKG2D, NKp30),激活NK细胞并增强其抗MM活性。双特异性分子,包括双特异性抗体(BsAbs)和双特异性T细胞衔接器(BiTEs),通过同时结合MM细胞和免疫效应细胞上的抗原,使这些细胞靠近从而促进免疫细胞裂解MM细胞。靶向BCMA和GPRC5D的BsAbs已展示出很好的临床疗效,针对FcRH5的早期临床试验结果也非常有前景。这些药物的免疫调节作用不依赖主要组织相容性复合体(MHC) I类的抗原提呈,可在没有共刺激的情况下发生,适用于免疫系统功能失调的MM患者。BCMA01全称B细胞成熟抗原,又名CD269或TNFRSF17,属于肿瘤坏死因子受体超家族成员,仅高表达于浆细胞表面,部分表达于浆细胞样树突状细胞,是MM免疫治疗的理想靶点。针对BCMA靶点开发的肿瘤免疫疗法主要分为3类:嵌合抗原受体T细胞疗法(CAR-T)、双特异性抗体(BsAb)、抗体药物偶联物(ADC)。GPRC5D02全称G蛋白偶联受体C57家族亚型D,为7次跨膜蛋白,高表达于浆细胞表面,低表达于毛囊区域,其他健康细胞则不表达,为治疗MM的潜在候选靶点。GPRC5D的表达与BCMA不相关,联合靶向这两个靶点的疗法可以发挥互补效应或开发双靶点CAR-T、双抗。FcRH503又称FcRL5、CD307或免疫球蛋白超家族受体易位相关蛋白2 (Immunoglobulin Superfamily Receptor Translocation Associated 2, IRTA2),是一种功能未知的膜蛋白,只表达于B细胞系,包括骨髓瘤细胞。临床前研究的数据表明,FcRH5/CD3双抗可成功激活T细胞,诱导细胞因子产生,并清除恶性浆细胞。根据科睿唯安数据库检索,靶向MM相关靶点药物研究数量众多,部分靶点研究进展情况见下表。强生的Darzalex是在2015年第一批被批准用于MM治疗的免疫疗法,这一时期MM的抗体药研发主要集中在靶向CD38靶点;到2020年GSK研发的首个靶向BCMA药物Blenrep在美获批,2021年BMS的Abecma上市,今年传奇生物的Carvykti上市以及强生的Teclistamab作为全球首个CD3/BCMA双抗获批即将上市,另外还有众多管线处在临床前或临床试验阶段,靶向BCMA赛道的药物研发可谓相当火热。布局靶向MM治疗药物的新靶点,避免同质化竞争,或许也不失为后来者开发该适应症药物以占得先机的上策,当然面临的风险也随之提高。部分药物研究进展整理自科睿唯安数据库及网络百奥动物利用基因编辑技术自主开发了MM相关靶点人源化小鼠及细胞系,助力抗体药物临床前研究。部分数据展示如下:B-hCD38 mice蛋白表达分析采集野生型C57BL/6小鼠和纯合B-hCD38小鼠的脾细胞和血液,用种特异性抗CD38抗体进行流式细胞术分析。小鼠CD38在WT小鼠中检测到。纯合B-hCD38中只检测到人CD38,而WT小鼠检测不到人CD38。药效验证将小鼠T淋巴细胞瘤B-hCD38-luc E.G7-OVA细胞经尾静脉注射到B-hCD38纯合小鼠(雌性,6周龄,n=6)体内。当总通量达到约106 Ig时,将小鼠分组,并用抗人CD38抗体对其进行治疗。(A) 抗人CD38抗体(内部合成)抑制B-hCD38-luc E.G7-OVA小鼠肿瘤生长。(B) 治疗期间体重变化。(C) B-hCD38-luc E.G7-OVA细胞的体内荧光素酶成像图。每周2次测量信号强度和体重,第0、3、7、10天行影像学检查。值表示为平均值±SEM。B-hBCMA micemRNA表达分析RT-PCR分析野生型C57BL/6小鼠和B-hBCMA小鼠BCMA基因特异性表达情况,鼠Bcma mRNA仅在野生型C57BL/6小鼠脾细胞中检测到,人BCMA mRNA仅在纯合B-hBCMA小鼠中检测到。B-hGPRC5D micemRNA和蛋白表达分析(A) RT-PCR分析野生型C57BL/6小鼠和B-hGPRC5D小鼠GPRC5D基因的特异性表达情况,鼠Gprc5d mRNA仅在野生型C57BL/6小鼠睾丸中检测到。人GPRC5D mRNA仅在纯合B-hGPRC5D小鼠中检测到。(B) 取野生型C57BL/6小鼠和纯合B-hGPRC5D小鼠的脾脏,用抗GPRC5D抗体进行western blot分析。由于抗体的交叉反应性,GPRC5D在WT小鼠和纯合B-hGPRC5D小鼠中均可检测到。 相关产品列表 更多数据信息,欢迎联系我们。参考资料[1] https://doi.org/10.1016/j.ctrv.2021.102284[2] https://www.cancer.net/cancer-types/multiple-myeloma/introduction[3] doi: 10.3389/fonc.2022.1032775[4] doi:10.3390/jcm9072166
导读趋化因子是一类分子量小的细胞因子,其主要作用是在稳态和病理条件下募集白细胞亚群,又被称为趋化性细胞因子。根据其主要蛋白质结构的前两个半胱氨酸(C)残基的位置,将趋化因子分为 C 、CC 、CXC 和 CX3C 趋化因子四大亚家族,其主要负责参与调控机体的器官发育、免疫监视、宿主防御和组织更新等生理过程。趋化因子也可以根据其表达和功能分为炎性趋化因子和稳态趋化因子。炎症性细胞因子在炎症部位迅速分泌,从而将效应细胞募集到发炎组织中;而稳态趋化因子在生理条件下组成性表达并在细胞迁移和归巢中发挥作用,因此趋化因子在协调炎症及正常状态下的体内细胞群定位中发挥核心作用。 图1.趋化因子配体与受体[1]趋化因子受体表达于细胞表面,是与G蛋白偶联的7次跨膜蛋白,趋化因子就是与受体结合后传递细胞信号的,故受体根据其结合的趋化因子亚家族来命名,如 XCR、CCR、CXCR、CX3CR 等。这些受体负责调控多条细胞信号通路,如调动肌动蛋白聚合、细胞骨架重排、粘着斑组装和解聚,此外也在细胞存活等生命活动中发挥着重要作用。图2.趋化因子信号通路图[2]此外,趋化因子还参与多种癌症发展过程,如血管生成、转移、癌细胞增殖、干性和侵袭性,是疾病进展的关键决定因素,对治疗反应和患者预后有很大影响。由于它们在癌细胞和免疫浸润细胞中重要的调节功能,使得趋化因子配体及其受体成为非常强大的治疗靶点。趋化因子的靶向治疗目前,国内外已有多家药企开启了针对趋化因子及其受体的药物开发,其中临床已批准的靶向趋化因子的药物包括:2012年上市的抗CCR4抗体(Mogamulizumab)和2007年上市的CXCR4拮抗剂(Maraviroc)等,用于治疗恶性血液瘤。此外,还有更多的针对不同趋化因子受体-配体轴作为癌症治疗策略的多种努力,这些治疗策略目前已表现出巨大的潜力,正处于临床开发中。数据来源于科睿唯安趋化因子及其受体对于维持机体稳态具有重要意义。然而一旦趋化因子活性失控,则会导致慢性炎症和自身免疫性疾病。针对一系列疾病靶点的研究机理,BioMice百奥动物自主开发了CCR家族靶点人源化小鼠,包括CCR1-CCR9,可以为该靶点药物的开发提供有效的临床前药效评价工具,助力靶向药物研究。B-hCCR1 mice基本信息 蛋白表达分析 通过流式细胞术检测野生型C57BL/6和纯合B-hCCR1小鼠中CCR1的蛋白表达。收集野生型C57BL/6和纯合B-hCCR1小鼠的腹腔巨噬细胞,并用种属特异性抗CCR1抗体进行流式细胞术分析。结果显示:鼠CCR1仅在野生小鼠中检测到,人CCR1仅在纯合B-hCCR1小鼠中检测到。 B-hCCR2 mice基本信息 蛋白表达分析 通过流式细胞术检测野生型C57BL/6和纯合B-hCCR2小鼠中CCR2的蛋白表达。收集野生型C57BL/6和纯合B-hCCR2小鼠的骨髓,并用种属特异性抗CCR2抗体进行流式细胞术分析。结果显示:鼠CCR2仅在野生小鼠中检测到,人CCR2仅在纯合B-hCCR2小鼠中检测到。 B-hCCR3 mice基本信息 蛋白表达分析 通过流式细胞术检测野生型C57BL/6和纯合B-hCCR3小鼠中CCR3的蛋白表达。收集野生型C57BL/6和纯合B-hCCR3小鼠的骨髓,并用种属特异性抗CCR3抗体进行流式细胞术分析。结果显示:鼠CCR3仅在野生小鼠中检测到,人CCR3仅在纯合B-hCCR3小鼠中检测到。 B-hCCR4 mice基本信息 蛋白表达分析 通过流式细胞术检测野生型C57BL/6和纯合B-hCCR4小鼠中CCR4的蛋白表达。收集野生型C57BL/6和纯合B-hCCR4小鼠的脾细胞,并用种属特异性抗CCR4抗体进行流式细胞术分析。结果显示:鼠CCR4仅在野生小鼠中检测到,人CCR4仅在纯合B-hCCR4小鼠中检测到。 B-hCCR4小鼠的T细胞能与抗人CCR4抗体结合通过流式细胞术(FACS)分析B-hCCR4小鼠的T细胞结合抗人CCR4抗体的能力。收集B-hCCR4 小鼠的脾细胞(雌性,6周龄),使用FACS检测T细胞与抗人CCR4抗体(内部合成)的结合。结果显示:与同型对照相比,B-hCCR4小鼠的T细胞可以很好地结合抗人CCR4抗体。 B-hCCR5 mice基本信息 蛋白表达分析 通过流式细胞术检测野生型C57BL/6和纯合B-hCCR5小鼠中CCR5的蛋白表达。收集野生型C57BL/6和纯合B-hCCR5小鼠的腹腔冲洗液,并用种属特异性抗CCR5抗体进行流式细胞术分析。结果显示:鼠CCR5仅在野生小鼠中检测到,人CCR5仅在纯合B-hCCR5小鼠中检测到。 B-hCCR6 mice基本信息 蛋白表达分析 通过流式细胞术检测野生型C57BL/6和纯合B-hCCR6小鼠中CCR6的蛋白表达。收集野生型C57BL/6和纯合B-hCCR6小鼠的脾细胞,并用种属特异性抗CCR6抗体进行流式细胞术分析。结果显示:鼠CCR6仅在野生小鼠中检测到,人CCR6仅在纯合B-hCCR6小鼠中检测到。B-hCCR7 mice基本信息蛋白表达分析 通过流式细胞术检测野生型C57BL/6和纯合B-hCCR7小鼠中CCR7的蛋白表达。收集野生型C57BL/6和纯合B-hCCR7小鼠的脾细胞,并用种属特异性抗CCR7抗体进行流式细胞术分析。结果显示:鼠CCR7仅在野生小鼠中检测到,人CCR7仅在纯合B-hCCR7小鼠中检测到。 B-hCCR8 mice基本信息 蛋白表达分析 人CCR8在纯合B-hCCR8小鼠肿瘤中CD4+ T细胞和Treg细胞均可检测到,但在脾细胞和血细胞中不能检测到。鼠CCR8在野生型小鼠的肿瘤中可检测到,脾细胞中弱表达,而在血细胞中不表达。血常规检测 收集野生型C57BL/6和B-hCCR8小鼠的外周血进行血常规检测(n=8,雌性,9周龄),结果显示:B-hCCR8小鼠的各指标与野生C57BL/6小鼠无明显差异,表明CCR8的人源化未改变血细胞的组成及形态。血生化检测收集野生型C57BL/6和B-hCCR8小鼠的血清进行血生化检测(n=8,雌性,9周龄),结果显示:B-hCCR8小鼠的各指标与野生C57BL/6小鼠无明显差异,表明CCR8的人源化未影响小鼠的肝、肾功能及脂肪代谢能力。 抗人CCR8抗体药效验证 抗人CCR8抗体在B-hCCR8小鼠接种MC38模型和B-Tg(hCCL1) MC38模型中均有较好的抑瘤效果。TILs分析显示:抗人CCR8抗体给药组(G2、G4)与未给药组(G1、G3)相比,总的Tregs和hCCR8+ Tregs的比例显著性降低。 B-hCCR9 mice基本信息 蛋白表达分析 通过流式细胞术检测野生型C57BL/6和纯合B-hCCR9小鼠中CCR9的蛋白表达。收集野生型C57BL/6和纯合B-hCCR9小鼠的胸腺细胞,并用种属特异性抗CCR9抗体进行流式细胞术分析。结果显示:鼠CCR9仅在野生小鼠中检测到,人CCR9仅在纯合B-hCCR9小鼠中检测到。趋化因子受体及其配体的相互作用非常复杂,尽管面临挑战,但目前还是有大量针对不同趋化因子受体的抑制剂正在临床前研究或临床试验阶段,可以相信未来趋化因子受体抑制剂将在调节TME的组成并优化患者的免疫反应方面发挥重大作用,为肿瘤患者带来更多希望。参考文献[1] Märkl, F., Huynh, D., Endres, S. & Kobold, S. Utilizing chemokines in cancer immunotherapy. Trends in Cancer 8, 670–682 (2022)[2] R&D Systems.lnc.The Chemokine Superfamily: Critical Regulators of Homeostasis & Inflammation,2019
上半年,宝船生物与百奥赛图合作研发的TNFR2非阻断型全人抗体药物(代号BC011)的实验数据已在2022年美国癌症研究协会(AACR)年会上公布。 BC011是一款新型TNFR2非阻断治疗抗体,来源于RenMab人源化IgG小鼠。通过在TNFR2人源化的肿瘤同源小鼠模型中进行无差别、高通量的体内有效性筛选,从大量候选抗体中筛选出了BC011。BC011能够促进CD8+T细胞增殖,耗竭Treg细胞,从而增加肿瘤微环境中效应T细胞的比例。 TNFR2靶点概览TNFRSF1B(TNF receptor superfamily member 1b)为TNF受体超家族成员,也称为TNFR2,在某些免疫细胞亚群(如CD4+和CD8+ T细胞)、内皮细胞、小胶质细胞和特异性神经元亚群、少突胶质细胞、心肌细胞和人间充质干细胞上表达。在多种肿瘤细胞中也有高表达,如黑色素瘤、肠癌和卵巢癌等。在肿瘤微环境中,TNFR2在Treg细胞中高表达,具有很好的特异性,是免疫逃逸和肿瘤增殖的潜在驱动力。TNFR2是I型跨膜糖蛋白,由461个氨基酸组成,其中前256个氨基酸形成包含四个富含半胱氨酸基序的胞外结构,31个氨基酸形成跨膜结构域,后174个氨基酸形成具有TRAF2结合位点的胞内结构。图1. TNFR2结构[1]TNFR1(p55,TNFRSF1A)和TNFR2(p75,TNFRSF1B)是同源关系最近的两个蛋白,他们分别激活两个独立的细胞内信号通路进行基因转录。TNFR1几乎在身体的所有细胞上都有表达,包括整个淋巴系统。从功能上讲,TNF主要依赖TNFR1进行凋亡,依赖TNFR2进行与T细胞存活相关的功能--TNFR2信号通过核转录因子NF-κB促进pro-survival基因的转录。图2. TNFR2信号在肿瘤中的作用机制[2]许多实验表明TNFR2抑制剂一方面可以有效阻断TNF跟TNFR2的结合,抑制Treg的增殖和功能,也可以靶向杀伤TNFR2高表达的肿瘤细胞,跟PD-(L)1抑制剂在体内都有非常好的协同效果;然而针对自身免疫病,TNFR2激活剂可进一步活化Treg细胞,抑制Teff细胞,下调免疫细胞的过度活化。因此,TNFR2作为肿瘤和自身免疫病的新一代治疗靶点,为肿瘤和自免疾病治疗提供了一种全新的策略。图3. 激动剂与抑制剂作用示意图[3]TNFR2靶点药物在研进展TNFR2作为肿瘤和自身免疫病治疗的潜力靶点,目前在研项目较少,绝大多数仍处于临床前阶段,速度最快的也仅推进至Ⅰ期临床。BioInvent全面布局了TNFR2抑制剂与TNFR2激动剂,其中TNFR2抑制剂BI-1808已处于临床Ⅰ期,除了单药疗法外,与PD-1抑制剂联用方案是药物重要的开发策略。聚焦国内,维立志博的TNFR2抗体药物LBL-019于9月29日临床试验申请获CDE受理,临床进展居前。此外,百济神州于2021年2月由Boston Immune(BITT)引入TNFR2抗体BITR2101,计划探索与替雷利珠单抗的联用方案。数据来源于科睿唯安相关动物模型对于TNFR2靶向调节剂的开发可谓至关重要,BioMice百奥动物自主研发的TNFR2系列人源化小鼠是评估TNFR2相关抗体药物的优质临床前实验动物模型。B-hTNFR2 mice蛋白表达分析通过流式细胞术对野生型C57BL/6和B-hTNFR2纯合鼠中TNFR2蛋白表达进行分析。用抗小鼠CD3ε抗体体内刺激野生型C57BL/6和B-hTNFR2纯合鼠,收集脾细胞,并用种属特异性抗TNFR2抗体进行流式细胞术分析。结果显示:在C57BL/6小鼠B、T和Treg细胞表面检测到mTNFR2,在B-hTNFR2纯合鼠B、T和Treg细胞表面检测到hTNFR2。TNFR2人源化不影响脾脏、淋巴结中白细胞各亚群比例(数据未展示)。TNFR2抗体与B-hTNFR2纯合鼠T细胞结合分析 从B-hTNFR2小鼠(n=3)中分离出脾细胞。通过流式细胞术测试TNFR2抗体与脾细胞的结合。从anti-mCD3ε(0.2或1μg/mL)和anti-mCD28(1μg/mL)体内刺激的B-hTNFR2小鼠分离出脾细胞。如图所示,与同型对照抗体(hIgG)相比,hTNFR2 Ab2与B-hTNFR2纯合鼠的T细胞是结合的。在anti-mCD3ε(0.2μg /mL)刺激条件下,mTNFα增强了hTNFR2 Ab2与B-hTNFR2纯合鼠的T细胞结合,这表明mTNFα/hTNFR2信号通路在B-hTNFR2纯合鼠中是可行的。TNFR2抗体药效验证抗人TNFR2抗体在B-hTNFR2小鼠中的抗肿瘤活性。B-hTNFR2小鼠(雌性,6-7周龄,n=8)皮下接种小鼠结肠癌MC38细胞(5E5)。当肿瘤体积达到约100 mm3时,对小鼠进行分组,然后使用抗人TNFR2抗体进行治疗。如图A所示,抗人TNFR2抗体能够有效控制B-hTNFR2小鼠的肿瘤生长,且呈剂量依赖性,证实B-hTNFR2小鼠模型是体内TNFR2抗体药理功效研究的有力工具。(hTNFR2 Ab2由客户提供)B-hTNFA/hTNFR2 mice抗人TNFR2抗体的体内有效性抗人TNFR2抗体在B-hTNFA/hTNFR2小鼠中的抗肿瘤活性。B-hTNFA/hTNFR2 小鼠(雌性,7周龄)皮下接种小鼠结肠癌MC38细胞(5E5)。当肿瘤体积达到约100 mm3时,对小鼠进行分组,然后使用抗人TNFR2抗体进行治疗。如图A所示,抗人TNFR2抗体能够有效控制B-hTNFA/hTNFR2 小鼠的肿瘤生长,证实B-hTNFA/hTNFR2 小鼠模型是体内TNFR2抗体药理功效研究的有力工具。B-hTNFR2/hTNFR1 mice蛋白表达分析通过流式细胞术检测野生型C57BL/6和纯合B-hTNFR2/hTNFR1 小鼠中TNFR2的蛋白表达。用抗小鼠CD3ε抗体体内刺激野生型C57BL/6和纯合B-hTNFR2/hTNFR1(H/H)小鼠,收集野生型C57BL/6和纯合B-hTNFR2/hTNFR1 小鼠的脾细胞,并用种属特异性抗TNFR2抗体进行流式细胞术分析。结果显示:鼠TNFR2仅在野生小鼠中检测到,人TNFR2仅在纯合B-hTNFR2/hTNFR1小鼠中检测到。通过流式细胞术检测野生型C57BL/6和纯合B-hTNFR2/hTNFR1 小鼠中TNFR1的蛋白表达。收集野生型C57BL/6和纯合B-hTNFR2/hTNFR1(H/H) 小鼠的脾细胞和血液,并用种属特异性抗TNFR1抗体进行流式细胞术分析。结果显示:鼠TNFR1仅在野生小鼠中检测到,人TNFR1仅在纯合B-hTNFR2/hTNFR1小鼠中检测到。B-hCTLA4/hTNFR2 mice蛋白表达分析通过流式细胞术检测野生型C57BL/6和纯合B-hCTLA4/hTNFR2 小鼠中CTLA4的蛋白表达。收集野生型C57BL/6和纯合B-hCTLA4/hTNFR2 小鼠的脾脏,并用种属特异性抗CD152(CTLA4)抗体进行流式细胞术分析。结果显示:鼠CTLA4仅在野生小鼠中检测到,人CTLA4仅在纯合B-hCTLA4/hTNFR2小鼠中检测到。通过流式细胞术检测野生型C57BL/6和纯合B-hCTLA4/hTNFR2小鼠中TNFR2的蛋白表达。收集野生型C57BL/6和纯合B-hCTLA4/hTNFR2小鼠的脾脏,并用种属特异性抗TNFR2抗体进行流式细胞术分析。结果显示:鼠TNFR2仅在野生小鼠中检测到,人TNFR2仅在纯合B-hCTLA4/hTNFR2小鼠中检测到。B-hPD-1/hPD-L1/hTNFR2 mice抗人PD-1和抗人TNFR2抗体联合治疗抗人PD-1抗体联合抗人TNFR2抗体在B-hPD-1/hPD-L1/hTNFR2小鼠中的抗肿瘤活性。B-hPD-1/hPD-L1/hTNFR2小鼠(雌性,6-7周龄,n=5)皮下接种hPD-L1 MC38细胞。当肿瘤体积达到约100 mm3时,对小鼠进行分组,然后使用抗人PD-1抗体和人hTNFR2抗体进行治疗。如图A所示,PD-1和hTNFR2抗体联合给药组的抑制作用强于单独给药组,证明B-hPD-1/hPD-L1/hTNFR2小鼠为评价hTNFR2抗体和hPD-1抗体联合给药疗效提供了有力的体内临床前模型。B-hTNFA/hTNFR2/hTNFR1 mice抗人TNFR2抗体的体内有效性抗人TNFR2抗体在B-hTNFA/hTNFR2/hTNFR1小鼠中的抗肿瘤活性。B-hTNFA/hTNFR2/hTNFR1 小鼠(雌性,8周龄,n=6)皮下接种鼠结肠癌 MC38 细胞。根据体重差异对小鼠进行分组,此时用客户提供的抗 TNFR2 Ab1 处理。如图 A 所示,抗人 TNFR2 抗体可有效控制 B-hTNFA/hTNFR2/hTNFR1 小鼠的肿瘤生长,且呈剂量依赖性,证明 B-hTNFA/hTNFR2/hTNFR1 小鼠为体内评价抗人 TNFR2 抗体提供了有力的临床前模型。TNFR2靶点相关模型列表参考文献[1] Medler, J.; Kucka, K.;Wajant, H. Tumor Necrosis Factor Receptor 2 (TNFR2): An Emerging Target in Cancer Therapy. Cancers 2022, 14, 2603. https://doi.org/ 10.3390/cancers14112603[2] Hiroyuki Takahash, Gumpei Yoshimatsu, Denise Louise Faustman. The Roles of TNFR2 Signaling in Cancer Cells and the Tumor Microenvironment and the Potency of TNFR2 Targeted Therapy. Cells. 2022;11(12):1952.[3] éva S. Vanamee, Faustman D L . TNFR2: A Novel Target for Cancer Immunotherapy. https://doi.org/10.1016/j.molmed.2017.09.007
异常的脂质循环和存储是导致心血管疾病和代谢性疾病的风险因素。富含TG(triglycerides,甘油三酯)的脂蛋白(如VLDL,乳糜微粒)在脂蛋白脂肪酶(LPL)的作用下将TG水解成为自由脂肪酸(FFA),进而被不同组织摄取和利用。因此,LPL对于TG代谢和脂肪分布具有重要作用,而LPL的活性受ANGPTL3, 4, 8的调节[1]。ANGPTL(Angiopoietin-like proteins,血管生成素样蛋白)家族包括8个成员,是分泌型糖蛋白,具有3个保守的结构域,即N端的信号肽、coiled-coil结构域(CCD)和C端fibrinogen-like结构域(FLD);只有ANGPTL8例外,它没有C端的FLD。对于ANGPTL3, 4, 8来说,它们都具有LPL和内皮脂肪酶(EL)的抑制结构域(specific epitope1, SE1)。图1. ANGPTL家族蛋白结构域[2]ANGPTL3主要在肝脏中表达,可抑制LPL和EL的酶活性,从而抑制TG水解,也就是抑制VLDL/乳糜微粒向TG含量低的脂蛋白(LDL, HDL)的转换,于是血浆中VLDL水平升高,可引发动脉粥样硬化斑块的产生。另一方面,ANGPTL3的FLD可与α5β3整合素结合,引发斑块新生血管、内膜增厚和炎症等。目前为止,三类ANGPTL3抑制剂药物在开发中,分别是单抗,反义寡核苷酸(ASO)和CRISPR/Cas9基因编辑,它们可促进VLDL的水解。已有的PCSK9抑制剂可促进LDL受体循环,增强肝脏摄取LDL并抑制肝脏分泌VLDL。由于ANGPTL3抑制剂与PCSK9抑制剂的作用机制不同,二者可能具有协同治疗冠心病(CHD)的作用。图2. ANGPTL3的生物学功能及其抑制剂药物的工作机制[3]ANGPTL3的活性依赖ANGPTL8的活化,但相对稳定,不受营养状况的影响。而ANGPTL4和ANGPTL8的水平受进食状况的影响,且呈相反的关系。 禁食或运动状态下,ANGPTL4表达上调(ANGPTL8下调),使WAT中LPL的活性减弱。于是,循环中的TG就进入外周组织(如心脏和肌肉)被利用。 ANGPTL3/8复合物分泌入血,可抑制循环系统、以及氧化组织(如心脏、肌肉)中的LPL活性。喂食状态下,ANGPTL8上调(ANGPTL4下调),使得心脏和肌肉中的LPL活性受ANGPTL3/8抑制,进而使得循环中的TG进入白色脂肪组织(WAT)存储起来。 总的来说,ANGPTLs可调节LPL活性,在禁食条件下促进TG被外周组织的利用,并在进食状态下促进脂质存储[4]。图3. ANGPTL3, 4, 8在不同营养状况下调节血脂的工作机制[1]ANGPTL3,4,8相关药物ANGPTL3是一个值得期待的心血管疾病靶点。2021年2月,FDA批准再生元的依维库单抗(evinacumab, anti-hANGPTL3 antibody)治疗家族性高胆固醇血症,这是此类药物中首个被批准上市的(first-in-class)。依维库单抗可降低甘油三酯,用于治疗纯合子家族性高胆固醇血症(HoFH)患者,增加循环中含apoB的脂蛋白的清除率来降低LDL。另外,还有一些开发靶向ANGPTL3的创新疗法的药物,其中比较领先的是辉瑞从Akcea 和 Ionis处获得全球独家许可的Vupanorsen。Vupanorsen作为ANGPTL3的反义寡核苷酸,能够通过抑制ANGPTL3合成,提高脂蛋白脂肪酶(LPL)的活性,从而降低富含TG脂蛋白(TRL)水平。国内也已开始对ANGPTL靶点进行药物研发,如苏州瑞博生物正在开发靶向ANGPTL3的siRNA抑制剂。活跃在研的ANGPTL8药物只有一款礼来公司的LY-3475766,处于临床I期。这是一款单克隆抗体药物,靶向ANGPTL3/8复合物,可显著降低血脂异常病人血浆中的TG和残存胆固醇含量。靶向ANGPTL4的药物主要有再生元开发的单克隆抗体REGN-1001和Lexicon医药开发的14D12单抗,均用于降血脂。为助力调控脂质代谢的药物开发,百奥动物自主研发了ANGPTL3, 4, 8的人源化小鼠。B-hANGPTL3 mice品系名称:C57BL/6-Angptl3tm1(ANGPTL3)/Bcgen背景:C57BL/6产品编号:112224蛋白表达分析用ELISA分析杂合B-hANGPTL3小鼠中ANGPTL3蛋白的种属特异性表达。取野生型C57BL/6小鼠和杂合B-hANGPTL3小鼠的血浆进行分析。mANGPTL3的表达在两种鼠中均可检测到,而hANGPTL3的表达只在杂合B-hANGPTL3小鼠中检测到,野生型小鼠中检测不到。B-hANGPTL3 mice plus品系名称:C57BL/6-Angptl3tm4(ANGPTL3)/Bcgen背景:C57BL/6产品编号:112523B-hANGPTL3 mice plus小鼠中的mANGPTL3基因(包括3'UTR)被替换为hANGPTL3基因(包括3'UTR),拟用于针对3'UTR设计的核酸药物评估。蛋白表达分析用ELISA分析纯合B-hANGPTL3 mice plus小鼠中ANGPTL3蛋白的种属特异性表达。取野生型C57BL/6小鼠和纯合B-hANGPTL3 mice plus小鼠的血浆进行分析。mANGPTL3的表达在野生型小鼠中可检测到。hANGPTL3的表达只在纯合B-hANGPTL3 mice plus小鼠中检测到,野生型小鼠中检测不到。B-hANGPTL4 mice品系名称:C57BL/6N-Angptl4tm1(ANGPTL4)/Bcgen背景:C57BL/6N产品编号:111085mRNA表达分析用RT-PCR分析纯合B-hANGPTL4小鼠中ANGPTL4基因的种属特异性表达。mANGPTL4 mRNA的表达仅在野生型小鼠的脂肪组织中检测到,而hANGPTL4 mRNA的表达只在纯合B-hANGPTL4小鼠中检测到,野生型小鼠中检测不到。 蛋白表达分析 用western blot分析纯合B-hANGPTL4小鼠中ANGPTL4蛋白的种属特异性表达。取野生型小鼠和纯合B-hANGPTL4小鼠的脂肪组织进行western blot分析。ANGPTL4的表达在两种鼠中均可检测到,因为ANGPTL4可种属交叉识别。并且,对于两种鼠来说,ANGPTL4的表达量在禁食状态下更高。 B-hANGPTL8 mice品系名称:C57BL/6N-Angptl8tm1(ANGPTL8)/Bcgen背景:C57BL/6N产品编号:111230mRNA表达分析 用RT-PCR分析纯合B-hANGPTL8小鼠中ANGPTL8基因的种属特异性表达。mANGPTL8 mRNA的表达仅在野生型小鼠中检测到,而hANGPTL8 mRNA的表达只在纯合B-hANGPTL8小鼠中检测到,野生型小鼠中检测不到。蛋白表达分析 用ELISA分析纯合B-hANGPTL8小鼠中ANGPTL8蛋白的种属特异性表达。取野生型C57BL/6小鼠和纯合B-hANGPTL8小鼠的血浆进行ELISA分析。ANGPTL8的表达在两种鼠中均可检测到,因为抗体可种属交叉识别。参考文献1. Sylvers-Davie KL, Davies BSJ. Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am J Physiol Endocrinol Metab. 2021;321(4):E493-E508. doi:10.1152/ajpendo.00195.20212. Carbone C, Piro G, Merz V, et al. Angiopoietin-Like Proteins in Angiogenesis, Inflammation and Cancer. Int J Mol Sci. 2018;19(2):431. Published 2018 Feb 1. doi:10.3390/ijms190204313. Rhee JW, Wu JC. Dyslipidaemia: In vivo genome editing of ANGPTL3: a therapy for atherosclerosis?. Nat Rev Cardiol. 2018;15(5):259-260. doi:10.1038/nrcardio.2018.384. Aryal, Binod et al. “ANGPTL4 in Metabolic and Cardiovascular Disease.” Trends in molecular medicine vol. 25,8 (2019): 723-734. doi:10.1016/j.molmed.2019.05.010
药物靶点,即药物与人体生物大分子的结合部位,是新药发现的源头。目前全世界在研的抗体类药物靶点有一千多个,如何在其中找到好的药物靶点,开发出一类新药是所有创新药企面临的共同问题。靶点基因的鉴定和验证在药物发现、开发过程中是必不可少且至关重要的一步。在哺乳动物生理学的背景下,基因敲除动物的表型研究已经成为破译基因功能及靶点验证的有力手段。与其他技术相比,基因敲除模型在药物靶点发现方面有自身独特的优势,敲除动物模拟了该靶点被完全抑制时的表型,因而能帮助我们了解该靶点在疾病中的作用,增加我们对人类正常生理过程及疾病发生机制的理解。图片来源 [1]小鼠作为在临床前生物医学研究中常用的模式动物之一,具有诸多方面的优势[2]:小鼠和人类有着绝大部分同源序列,尽管二者在生理和免疫学存在一些差异,但基因组测序发现,小鼠和人类的~30,000个基因中,只有300个(即1%)是两个物种特有的;在一项研究中所有小鼠通常具有相同的遗传背景(即单一近交系或回交到同一个遗传背景)。因此,所有研究对象的基因是相同的,消除了如遗传变异和基因多态性等潜在的复杂因素影响;小鼠繁殖周期短,代际间隔小于3个月,且每窝产仔数量多,可以快速扩繁获得具有统计学意义数量的实验用鼠;在特定的研究中小鼠具有明确的病史,且所有动物可在相同的环境下饲养,排除了其对实验结果可重复性的影响;在一项特定的研究中,所有小鼠采用相同的实验方案,并可进行终点病理学的完整评估,包括检测生理参数和组织病理学分析;小鼠基因组计划已经完成且小鼠基因改造技术成熟,可以构建模拟人类疾病的转基因小鼠模型以了解发病机制及对药物的反应等研究。转基因小鼠模型在生物医学研究中的应用[2]基因敲除小鼠模型除了可以提供表型分析信息外,其在抗体产生和鉴定方面具有两个优势。(1)与野生型小鼠相比,理论上特定基因敲除小鼠产生抗体的效率应该更高,因为敲除小鼠的免疫系统从未接触过免疫蛋白。(2)用于验证抗体特异性,“……严格控制抗体特异性,要求将野生型组织或细胞中的抗体反应性与敲除动物中的抗体反应性进行比较……”。[3] 因此,基因敲除小鼠是开发新型药物或新治疗策略非常有用的实验工具。百奥动物开发了一系列靶点基因敲除(KO)小鼠,可以满足新药开发中“靶点发现”过程的动物模型需求,助力新药研发。扫描下方二维码查看700+基因敲除小鼠资源库,下面以B-IL4ra KO mice(C)为例进行部分数据介绍。B-IL4ra KO mice(C)哮喘小鼠模型构建实验动物:BALB/c,B-IL4ra KO mice(C),4-5周龄,雌性;致敏阶段:第0,7,14天腹腔注射OVA+AI(OH)3;激发阶段:小鼠在第21-25天每天接受2%的OVA雾化30分钟。检测分析(B)哮喘小鼠的支气管肺泡灌洗液(BALF)中免疫细胞浸润分析;(C)血清中IgE的检测;(D)肺组织的HE染色。通过对IL4RA靶点敲除小鼠的哮喘模型数据分析发现:Il4ra基因敲除后,与对照组相比,BALF中浸润的嗜酸性粒细胞数量和比例有显著性下降;血清中检测不到IgE;肺组织中浸润的炎性细胞和粘液分泌减少。这些结果证明IL4RA可以作为哮喘治疗的潜在靶点进行开发。更多小鼠数据信息,欢迎联系我们。参考资料[1] Disease Models & Mechanisms (2016) 9, 101-103. doi:10.1242/dmm.024547[2] Transgenic Res (2012) 21:327–349. doi:10.1007/s11248-011-9537-3[3] Disease Models & Mechanisms (2019) 12, dmm038224.[4] Drug Discovery Today, Volume 17, Supplement, February 2012, Pages S24-S30. https://doi.org/10.1016/j.drudis.2011.09.007
2022年12月19日,Madrigal Pharmaceuticals公司宣布了resmetirom(甲状腺激素受体(THR)-β口服选择性激动剂)治疗非酒精性脂肪肝炎(non-alcoholic steatohepatitis, NASH)的III期临床试验的积极结果,该研究达到双主要终点与一项关键次要终点,这一新闻无疑为NASH研究领域带来了最好的新年贺礼。 NASH是非酒精脂肪肝病(NAFLD)的疾病进展形式,表现为肝细胞脂肪变性,炎症细胞浸润和肝细胞气球样病变等症状,疾病进展可能会进一步导致肝纤维化、肝硬化和肝细胞癌的发生。根据流行病学调查,NAFLD的全球患病率约为25%,NASH全球患病率约为1.5-6.5%,预计2015年至2030年期间NASH的患病率将增加63%,未来5-15年将超过丙肝感染成为等待肝移植的末期肝病的主要原因。全球NASH药物市场规模快速增长,预计2025年将达到107亿美元。NASH治疗药物的主要作用机制NASH的病理生理过程复杂,肥胖、II型糖尿病和代谢综合征是主要易感因素之一。但尚未有针对NASH适应症的药物在欧美等市场获批上市,仍需要复合的管理和药物联合治疗。目前治疗NASH的药物主要作用机制包括改善糖脂代谢、降低脂质毒性和细胞死亡、缓解肝脏炎症和抗纤维化等[1、2]。改善糖脂代谢药物肝脏中过量的脂肪酸导致过量能量,从而产生肝细胞的脂肪毒性代谢产物破坏肝细胞,因此减少肝内游离脂肪酸是一种潜在治疗策略。1、FXR(法尼酯 X受体)激动剂:可以改善胰岛素敏感性,抑制DNL并降低胆汁酸合成。此外,FXR的激活可以抑制固醇调节元件结合蛋白1C(SREBP-1C),进而调节甘油三酯代谢和脂质再生。2. PPARs(过氧化物酶体增殖物激活受体):包括三个亚型(PPARα、PPARβ和PPARγ),可以调节脂肪酸代谢。3. GLP-1R(胰高糖素样肽受体)激动剂:增强胰岛素分泌,以葡萄糖浓度依赖方式抑制胰高血糖素的分泌,减少血糖。4. THRβ(甲状腺激素受体β)激动剂:能够激活肝脏中的THRβ亚型,减少脂肪毒性改善肝功能。缓解肝脏炎症药物NASH疾病患者的肝巨噬细胞累积和炎症症状明显。1. ASK1(凋亡信号调节激酶1)抑制剂:阻断ASK1的激活,可抑制炎症发生、肝脏纤维化、胰岛素抵抗和肝脏脂质堆积等疾病过程。2. A3AR(选择性A3腺苷受体)激动剂:下调NF-κB信号通路,诱导炎性细胞凋亡。3. TLR4拮抗剂:抗炎抗纤维化。抗肝脏纤维化药物主要作用于抑制原纤维生成和纤维蛋白溶解增强两个方面。1. CCR2/5(C-C基序趋化因子受体)抑制剂:CCR2和CCR5介导通过募集炎症单核细胞和巨噬细胞的纤维化,并激活淋巴细胞和肝星状细胞。CCR2/5抑制剂具有抗炎和抗纤维化作用。2. TGF-β(转化生长因子)抑制剂:TGF-β诱导的促纤维化减弱。3. FGF(激素成纤维细胞生长因子)类似物:FGF19类似物抑制胆汁酸合成,调节代谢平衡;FGF21类似物减少肝脏脂肪和炎症,逆转纤维化,增加胰岛素敏感性并改善脂蛋白。全球部分NASH药物研发进展针对NASH的治疗药物以代谢类药物为主,多数为小分子化合物,海外药企诺和诺德、诺华、阿利斯康等均有布局,国内歌礼制药、众生药业、东阳光药业、先为达生物处于临床I/II期阶段。也有众多药物在NASH适应症上惨遭失败,20多款药物开发终止。2022年再生元在《新英格兰医学》公布一项研究,揭示未来NASH新兴靶点CIDEB,CIDEB基因变异被发现具有保护肝脏的功能;Cell Metabolism杂志上研究论文阐明了NASH中Cholesterol与TAZ的联系,为治疗纤维化NASH提供了新的靶点;宾夕法尼亚大学在Science发表的一项研究展示了选择性抑制剂mTORC1可有效抑制NASH。相信随着科学研究和生物技术的不断提高,NASH药物开发有望迎来更多创新药物选择。数据来源:科睿唯安数据库,公开资料NASH动物模型及药效评估NASH动物模型是临床前研究的重要工具,主要分为饮食诱导、化学诱导、基因编辑动物模型以及联合诱导模型。除了之前已经构建的WD(西方饮食)诱导NASH小鼠模型、HFMCD(高脂肪蛋氨酸胆碱缺乏饮食)诱导的NASH小鼠模型以及联合诱导的STAM-NASH模型,百奥动物新构建出基于C57BL/6老龄鼠和B-ob/ob小鼠的GAN(Gubra-Amylin NASH)饮食诱导NASH模型。GAN饮食是一种经过改良、无反式脂肪的高脂高胆固醇高果糖饲料(含40%脂肪、20%果糖和2%胆固醇),研究表明,GAN饮食诱导的NASH动物模型更生理的模拟了人类NASH疾病的发生,在生理、代谢和组织病理学方面有良好的转化性[3]。不同性别的动物在NASH易感性和严重程度上差异很大,雄性啮齿类动物比雌性更易发生NASH,因此绝大部分的研究只选择使用雄性动物。但雌性动物特定的病理生理机制的研究对NASH的精准治疗方案同样意义重大,FDA也要求不能忽略雌性动物对NASH研究的意义。百奥动物基于C57BL/6老龄鼠构建了GAN饮食诱导的NASH模型,同时选用雌雄两性别的老年鼠进行NASH模型的开发。结果显示,老龄鼠造模周期较年轻小鼠更短,诱导12周即可出现NASH表型,21周出现纤维化,能够更好的助力NASH药物临床前研究,加速药物评估和转化进程。C57BL/6老龄鼠的NASH模型模型诱导实验动物(C57BL/6 mice,5W,M;C57BL/6 mice,56W,M/F)使用Gubra-Amylin NASH (GAN) 饮食饲养。模型验证GAN饮食诱导的老龄鼠NASH模型表现出明显的代谢紊乱GAN饮食诱导的老龄鼠NASH模型表现出代谢紊乱。(A-B)GAN饮食诱导组的体重增加。(C)GAN饮食诱导组的葡萄糖耐受能力受损。(D)C图曲线下面积。(E)GAN饮食诱导组的血浆胰岛素含量增加。N=6-10 mice per group. Data are expressed as mean ± SEM. **: p<0.01.GAN饮食诱导12周后,老龄鼠表现出比年轻小鼠更严重的NASH表型GAN饮食诱导的老龄鼠NASH模型(A)诱导12周后H&E染色的代表性图片。(B)NAS(NAFLD acticity score)评分。 Data are expressed as mean ± SEM.N=6-10 mice per group. **: p<0.01. GAN饮食诱导21周后,老龄鼠表现出比年轻小鼠更严重的纤维化GAN饮食诱导的老龄鼠纤维化(A)诱导21周后天狼星红染色的代表性图片。(B)天狼星红染色的纤维化评分。Data are expressed as mean ± SEM. N=6-10 mice per group. **: p<0.01.GAN饮食诱导21周后,老龄雄鼠肝脏中的免疫细胞浸润增加GAN饮食诱导21周后,老龄雄鼠肝脏中的免疫细胞浸润增加(A)流式细胞仪评估肝脏中单核细胞(CD11bintF4 / 80low)和kupffer细胞(CD11b+F4 / 80hi)浸润比例。(B)肝脏中不同类型免疫细胞分析。Data are expressed as mean ± SEM. N=6-10 mice per group. *P <0.05, **P <0.01, ***P <0.001.GAN饮食诱导的C57BL/6小鼠NASH模型构建及药效评价模型诱导实验动物(C57BL/6 mice,6W,M)使用Gubra-Amylin NASH (GAN) 饮食饲养。模型验证GAN饮食诱导的C57BL/6小鼠NASH模型(A)治疗下的体重变化。(B)治疗后的葡萄糖耐受能力。(C)B图曲线下的面积。(D)诱导20周后H&E染色的代表性图片。(E)NAS(NAFLD acticity score)评分。Data are expressed as mean ± SEM. N=9 mice per group. *p<0.05, **p<0.01,***p<0.001.GAN饮食诱导的B-ob/ob小鼠NASH模型构建及药效评价模型诱导实验动物(B-ob/ob mice,6W,M)使用Gubra-Amylin NASH (GAN) 饮食饲养。模型验证GAN饮食诱导的B-ob/0b小鼠NASH模型(A)治疗下的体重变化。(B)治疗后的葡萄糖耐受能力。(C)B图曲线下的面积。Data are expressed as mean ± SEM. N=9 mice per group. *p<0.05, **p<0.01,***p<0.001.GAN饮食诱导B-ob/ob小鼠的NASH及纤维化(A)诱导16周后H&E染色的代表性图片。(B)NAS(NAFLD acticity score)评分。(C)诱导16周后天狼星红染色的代表性图片。(D)天狼星红染色的纤维化评分。Data are expressed as mean ± SEM. N=9 mice per group.百奥动物NASH模型比较百奥动物可提供多款饮食/饮食化学联合诱导的NASH小鼠模型,以及基于NASH模型的药物药理药效评估服务,欢迎联系洽谈。参考资料:1. Fu Y, et al., Diagnostic and therapeutic strategies for non-alcoholic fatty liver disease. Front Pharmacol. 2022 Nov 2;13:973366.2. Oseini, A.M. and Sanyal, A.J. Therapies in non-alcoholic steatohepatitis (NASH). Liver Int, 2017,37: 97-103.3. Hansen, H.H., et al., Human translatability of the GAN diet-induced obese mouse model of non-alcoholic steatohepatitis. BMC Gastroenterol. 2020 Jul 6;20(1):2104. Hansen, H.H., et al., Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discov Today, 2017. 22(11): p. 1707-1718.5. Ibrahim, S.H., et al., Animal Models of Nonalcoholic Steatohepatitis: Eat, Delete, and Inflame. Dig Dis Sci, 2016. 61(5): p. 1325-36.