药智官方微信 药智官方微博
客服 反馈

搜索:其他

蛋白质磷酸化是生物界最普遍,也是最重要的一种蛋白质翻译后修饰,20世纪50年代以来一直被生物学家看作是一种动态的生物调节过程。在细胞中,大概有1/3的的蛋白质被认为是通过磷酸化修饰的。蛋白质的磷酸化修饰与多种生物学过程密切相关,如DNA损伤修复、转录调节、信号传导、细胞凋亡的调节等。磷酸化蛋白质及多肽的研究可以帮助人们阐述上述过程的机理,进一步认识生命活动的本质。近年来随着蛋白质组技术的不断发展,蛋白质磷酸化的研究越来越受到广泛的关注。蛋白质磷酸化在细胞信号转导中的作用磷酸化多肽主要指肽链中的Ser、Tyr和Thr残基的侧链羟基被修饰成酸式磷酸酯多肽。磷酸化多肽是研究蛋白质磷酸化过程的必不可少的工具,因此研究蛋白质及多肽的磷酸化反应并确定成熟简便的合成路线就变得非常重要。目前为止,多肽的磷酸化修饰主要有后磷酸化法和单体法两种合成方法。后磷酸化法是多肽序列在树脂上合成完后,再对其中的Ser、Tyr或Thr的侧链羟基进行磷酸化;单体法则是将适当保护的磷酸化氨基酸直接引入到多肽序列中,这种方法较后磷酸化法操作更为简便,已经成为多肽磷酸化修饰的主要方法。单体法修饰时,磷酸化的氨基酸由于侧链修饰的较大基团产生的位阻而导致难以与肽链缩合,并且之后的氨基酸引入都会比较困难,尤其在含有多个磷酸化位点修饰时,合成将变得异常困难,并且最终产物成分复杂,难以分离,产率极低。因此,当肽链中多个位点进行磷酸化时,可以考虑采用后磷酸化法,其合成过程主要就是在多肽合成结束之后,选择性的脱去要标记氨基酸的侧链保护基,对于Tyr,Thr可以直接使用侧链不保护的氨基酸进行反应。侧链保护基在1%TFA/DCM条件下可以定量的脱除。后磷酸化时,可以采用双苄基亚磷酰胺,四氮唑生成亚磷酰胺四唑活性中间体,连接到羟基上,然后在过氧酸条件下氧化生成磷酰基,完成反应。我们提供多肽进行两个,三个,四个,五个磷酸化位点修饰的高质量多肽。拥有成熟的合成纯化技术,不断进取的精英团队,国肽生物已经成为值得信赖的多肽供应品牌。成功案例:序列NH2-TERD(pS)D(pT)DVEEDSRPPGRPAEVHLERAQPFGFID(pS)D(pS)DAEEEY-CONH2,四个磷酸化修饰位点。HPLC分析:MS分析:合肥国肽生物官网:http://www.bankpeptide.com

询价

随着多肽在生物医药领域越来越广泛和深入的应用,标记和修饰性的多肽种类的需求越来越多,质量需求也越来越高。稳定同位素标记就是其中典型的一种。稳定同位素标记示踪,可以实现肽类代谢途径研究,能够随时追踪含有同位素标记的多肽在体内或体外位置及数量的变化情况。同位素标记具有高灵敏度、定位简单、定量准确等优点,使得同位素修饰在医学及生物化学领域得到越来越广泛的关注。目前我们公司合成的同位素标记多肽主要为C13,N15两种同位素标记的多肽,通过直接在肽链中引入同位素标记的氨基酸达到有效标记整条肽链的目的,常用的同位素标记的氨基酸有Tyr,Thr,Lys,Arg,Glu等。同位素标记的多肽与普通肽的区别在于其结构中某一个或几个氨基酸中的C被C13取代或者N被N15取代。专业的团队,一流的合成纯化技术,严谨的工作态度,严格的质量要求,是我们能够满足客户对同位素标记多肽的不同纯度要求的重要保障。与此同时,同位素标记多肽的原料(同位素标记的氨基酸)价格昂贵,使得我们合成成本高,这就直接导致了这种多肽价格的高昂,秉着客户至上,竭力满足客户需求的经营理念,我们国肽生物提供微克,毫克到千克级别的质量服务。成功案例:序列WVQTLSEQVQEELLSSQVTQEL[13C-15N-R]HPLC分析:MS分析:合肥国肽生物官网:http://www.bankpeptide.com欢迎咨询服务热线:17718122684;17718122172;17730030476;17718122397

询价

胰岛素合成技术 胰岛素是由胰脏内的胰岛β-细胞受内源性或外源性物质如葡萄糖、乳糖、核糖、精氨酸、胰高血糖素等物质刺激而分泌的一种蛋白质激素。胰岛素是机体内唯一降低血糖的激素,同时促进糖原、脂肪、蛋白质合成,因此,胰岛素在人体新陈代谢中起着重要作用。如果机体内胰岛素的量不足就会引发糖尿病,目前胰岛素依然是治疗糖尿病的特效药,因此胰岛素的人工合成技术一直是生物医药领域研究的热点。现在采用的基因工程技术有两种方法可以让微生物发酵产生胰岛素。一种就是先在大肠杆菌中分别合成胰岛素A链和B链,然后在体外用化学方法将两条链连接成胰岛素。而另一种是采用分泌型载体表达胰岛素原,然后将其转化为胰岛素。近年来,重组人胰岛素已在临床上广泛应用,但是由于胰岛素分子非常容易聚合,在浓度较高的胰岛素注射液中主要以二体和六体的形式存在。为解决这个难题,通过蛋白质工程开发出的单体速效胰岛素也应运而生。胰岛素的合成相较于普通含有多对二硫键的多肽,难点在于其结构中包含了分子间与分子内的两种二硫键,使得几对二硫键的特异性定点形成更加困难,产率低,纯度低等结果不可避免地出现了。固相合成法合成胰岛素是我们国肽生物的代表性技术,我们所具有的成熟的胰岛素合成工艺已经得到了国内外客户的广泛认可和肯定。我们的胰岛素产品突破了以往的收率低,纯度不高等缺陷,能够进行大批量生产,并且产品纯度能够高达99%,国肽生物是值得客户信任的胰岛素供应品牌。 合肥国肽生物官网:http://www.bankpeptide.com

询价

生物体内的多种生命进程调节都是通过蛋白质与蛋白质之间的相互作用来实现的。例如病毒的自组装,细胞的生长,分裂,分化等过程。而通常蛋白-蛋白相互作用的界面太大,从而使小分子药物很难对其进行靶向定位,达到高效特异性地阻断这种相互作用,展现良好的治疗效果。蛋白类药物因为很难顺利通过细胞膜所以也达不到直接靶向细胞内相互作用的效果,因此,研究者们开始寻求一种能够克服这两种药物缺点的既能够进入细胞膜又能特异性靶向蛋白-蛋白相互作用的新的药物分子。研究表明,具有α-螺旋结构和富含正电荷的多肽可以穿过细胞膜。但是一旦从母体分离就不能保持其原有的二级结构,构象的不稳定导致其与蛋白质的结合作用减弱,而普通的线性多肽不能穿过细胞膜且容易被水解。经过不断尝试,Verdine等发展了一种新型结构的多肽,这种多肽被称为订书肽,它是一种全碳支架的具有α-螺旋结构的多肽,全碳支架稳定α-螺旋结构,增强了多肽分子与蛋白质的相互作用,并且订书肽能够穿过细胞膜,不容易被水解,相比于之前的小分子药物和蛋白类药物,具有更高的药理活性。订书肽的合成与普通多肽合成的区别在于在固相合成肽链过程中引入两个含有α-甲基,α-烯基的非天然氨基酸,然后两个非天然氨基酸之间发生烯烃复分解反应环化构成稳定α-螺旋结构构象的全碳支架,进而合成订书肽。上图为两种不同构型的含有α-甲基,α-烯基的非天然氨基酸的一般结构。这种类型的氨基酸合成方法一般为:订书肽的一般合成路线为:国肽生物始终坚持客户至上的经营理念,通过长久的实验累积,不断优化合成条件和纯化工艺,已经具备了成熟的订书肽合成工艺,具有了向全球提供高品质的订书多肽的能力,能够充分满足客户的各种研发需要。成功案例:合成下列结构订书肽HPLC分析:MS分析:合肥国肽生物官网:http://www.bankpeptide.com翻译:translation:The regulation of multiple life processes in an organism is achieved through the interaction between proteins and proteins. For example, self-assembly of viruses, cell growth, division, differentiation and the like. Usually, the interface of protein-protein interaction is too large, so that it is difficult for small molecule drugs to target them, and the interaction is effectively and specifically blocked, showing good therapeutic effects. Because protein drugs are difficult to pass through the cell membrane, they do not directly target intracellular interactions. Therefore, researchers have begun to seek a solution that can overcome the shortcomings of these two drugs and enter the cell membrane and specific targets. A new drug molecule that interacts with protein-proteins.Studies have shown that polypeptides with alpha-helical structures and positively charged can cross cell membranes. However, once it is separated from the mother, its original secondary structure cannot be maintained. The instability of the conformation causes its binding to proteins to be weakened, while the ordinary linear polypeptide cannot pass through the cell membrane and is easily hydrolyzed. After repeated attempts, Verdine et al. developed a novel structure of a peptide called a staple peptide, which is an all-carbon scaffold with an α-helical structure and an all-carbon scaffold that stabilizes the α-helical structure. The interaction between the polypeptide molecule and the protein is enhanced, and the peptide can pass through the cell membrane and is not easily hydrolyzed, and has higher pharmacological activity than the previous small molecule drugs and protein drugs.The synthesis of a peptide is different from the synthesis of a common polypeptide by introducing two unnatural amino acids containing an α-methyl group, an α-alkenyl group, and then an olefin metathesis reaction between two unnatural amino acids. Cyclization constitutes a full carbon scaffold that stabilizes the conformation of the α-helical structure, thereby synthesizing the book peptide.The top panel shows the general structure of an unnatural amino acid containing alpha-methyl, alpha-alkenyl groups in two different configurations. This type of amino acid synthesis is generally:The general synthetic route for a peptide is:National Peptide Biotechnology always adheres to the customer-oriented business philosophy. Through long-term experimental accumulation, continuous optimization of synthesis conditions and purification processes, it has a mature synthesis process of peptides, and has the ability to provide high-quality peptides to the world. Can fully meet the various research and development needs of customers.success case:Synthesis of the following structural peptidesHPLC analysis:MS analysis:Bankpeptide biological technology co.,LTD:http://www.bankpeptide.com

询价

全国化妆品肽-上海多肽化妆品有什么效果-北京化妆品肽多少钱生物体内大多数的化学反应、生物反应和生命进程都是有特定的氨基酸序列调控的。能够转录这些相互作用的多肽序列和具有诱导产生小片段并且活性稳定的能够人工合成的的多肽的生物学活性已经开创了多肽在皮肤学和皮肤护理领域的分子应用。比如应用在如感染、色素沉积、细胞增殖和分化、血管形成、遗传免疫和蛋白合成及调控等。如今,生物肽在皮肤护理的相关进程中起着重要的作用,化妆品肽的市场需求也越来越高,国肽生物也开始供应多种化妆品肽。合肥国肽生物官网:http://www.bankpeptide.com翻译:translation:Cosmetic Peptide - What is the effect of peptide cosmetics? How much is cosmetic peptide?Most of the chemical reactions, biological reactions, and life processes in organisms are regulated by specific amino acid sequences. The biological activity of polypeptides capable of transcribing these interacting polypeptides and the ability to induce the production of small fragments and the activity of stable synthetic polypeptides has opened up molecular applications in the field of dermatology and skin care. For example, applications such as infection, pigmentation, cell proliferation and differentiation, angiogenesis, genetic immunity, and protein synthesis and regulation. Nowadays, biopeptides play an important role in the process of skin care, and the market demand for cosmetic peptides is also increasing. National peptide organisms are also beginning to supply a variety of cosmetic peptides.Bankpeptide biological technology co.,LTD:http://www.bankpeptide.com

询价

生物体内的多种生命进程调节都是通过蛋白质与蛋白质之间的相互作用来实现的。例如病毒的自组装,细胞的生长,分裂,分化等过程。而通常蛋白-蛋白相互作用的界面太大,从而使小分子药物很难对其进行靶向定位,达到高效特异性地阻断这种相互作用,展现良好的治疗效果。蛋白类药物因为很难顺利通过细胞膜所以也达不到直接靶向细胞内相互作用的效果,因此,研究者们开始寻求一种能够克服这两种药物缺点的既能够进入细胞膜又能特异性靶向蛋白-蛋白相互作用的新的药物分子。研究表明,具有α-螺旋结构和富含正电荷的多肽可以穿过细胞膜。但是一旦从母体分离就不能保持其原有的二级结构,构象的不稳定导致其与蛋白质的结合作用减弱,而普通的线性多肽不能穿过细胞膜且容易被水解。经过不断尝试,Verdine等发展了一种新型结构的多肽,这种多肽被称为订书肽,它是一种全碳支架的具有α-螺旋结构的多肽,全碳支架稳定α-螺旋结构,增强了多肽分子与蛋白质的相互作用,并且订书肽能够穿过细胞膜,不容易被水解,相比于之前的小分子药物和蛋白类药物,具有更高的药理活性。订书肽的合成与普通多肽合成的区别在于在固相合成肽链过程中引入两个含有α-甲基,α-烯基的非天然氨基酸,然后两个非天然氨基酸之间发生烯烃复分解反应环化构成稳定α-螺旋结构构象的全碳支架,进而合成订书肽。上图为两种不同构型的含有α-甲基,α-烯基的非天然氨基酸的一般结构。这种类型的氨基酸合成方法一般为:订书肽的一般合成路线为:国肽生物始终坚持客户至上的经营理念,通过长久的实验累积,不断优化合成条件和纯化工艺,已经具备了成熟的订书肽合成工艺,具有了向全球提供高品质的订书多肽的能力,能够充分满足客户的各种研发需要。成功案例:合成下列结构订书肽HPLC分析:MS分析:合肥国肽生物官网:http://www.bankpeptide.com

询价

荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操作简便等优点,使得荧光标记物在许多研究领域的应用日趋广泛。荧光标记物质在蛋白的功能研究、药物筛选等领域也有着广泛的应用。人们利用利用荧光标记的多肽来检测目标蛋白的活性,并将其发展的高通量活性筛选方法应用于疾病治疗靶点蛋白的药物筛选和药物开发(例如,各种激酶、磷酸酶、肽酶等)。因此,多肽的荧光修饰,同样是多肽合成领域的重要内容。下面是一些常用的多肽修饰荧光物质:下面是一些荧光物质的激发光波长和发射光波长1.FITC修饰异硫氰酸荧光素(FITC)具有比较高的活性,通常来说,在固相合成过程中引入该种荧光基团相对于其他荧光素要更容易,并且反应过程中不需要加入活化试剂。我们公司合成的FITC修饰的多肽通常主要有两种形式:(1)在整条肽链末端接入FITC,并且在FITC之前接入一分子的Acp(6-氨基己酸),也称烷基间隔器。反应中FITC与肽链上裸露的-NH2反应,Acp的接入提供了六个碳的直链空间,大大降低了反应的空间位阻,提高了反应效率,降低了反应难度。其次,FITC还与多肽结构中的-SH,侧链-NH2反应,Acp的加入也降低了这种副反应发生的可能。此外,多肽在酸性环境条件下切割时,在N端接入FITC的多肽需要经历环化作用来形成荧光素,这种过程通常都会伴随最后一个氨基酸的切除,而烷基间隔器Acp的接入就避免了这一情况的发生。(2)在整条肽中的某个Lys侧链接入FITC,Lys侧链为末端为-NH2的四碳直链烷基,直接起到了降低空间位阻的作用。这种修饰方式能够灵活的在整条肽中任何位置进行FITC修饰,而不仅仅局限于末端。我们所采用的FITC修饰多肽的两种形式,都具有操作简便,成功率高,容易分离纯化等优点。2.AMC修饰7-氨基-4-甲基香豆素(AMC)是一种应用广泛的荧光标记试剂,例如,酶的痕量测定,酶的鉴定,激光染料的制备等多种用途,此外,C端用香豆素修饰的泛素分子也是研究蛋白质泛素化过程的重要探针。与其他荧光染料不同的是,AMC修饰多肽分子是从C端进行:(1)AMC与肽链C端第一个氨基酸反应;(2)固相合成整条肽链(从第二个氨基酸开始),并且保留整条肽链的侧链保护基和最后一个氨基保护基;(3)液相缩合AA-AMC与全保护的肽链;(4)切除保护基,完成肽链的修饰。国肽生物提供5(6)-FAM,FITC,CY5,RhodamineB,PNA,EDNAS/dabcyl,Biotin等各种修饰的高质量多肽。国肽生物具有成熟的荧光标记多肽技术,优良的纯化生产工艺,定制荧光修饰的多肽,国肽生物是值得信任的品牌。成功案例:序列Cy5-betaA-YNDEDPEKEKRIKELELLLMSTENELKGQQAL,CY5进行修饰。HPLC分析:MS分析:合肥国肽生物官网:http://www.bankpeptide.com

询价

糖肽连键的主要类型有两种:N-糖肽键、O-糖肽键。糖肽连键的主要类型有两种:一,N-糖肽键,是指β-构型的N-乙酰葡糖胺异头碳与天冬酰胺的γ-酰胺N原子共价连接而成的N-糖苷键。二,O-糖肽键,是指单糖的异头碳与羟基氨基酸的羟基O原子共价结合而成的O-糖苷键。  合肥国肽生物科技有限公司(简称:国肽生物TM)成立于2014年,是一家专业从事多肽产品的研发、生产和销售以及多肽技术转让的国家级高新技术企业。BP公司成立之初,便成功收购了国内几家多肽、抗体公司,是目前国内最大的专业多肽合成、抗体制备、蛋白表达的规模型生产企业。  国肽生物专长于荧光标记肽、同位素标记肽、人工胰岛素、药物肽、化妆品肽、长肽困难肽等产品的合成与研发,致力于学术水平的科研提升,搭建学术交流平台,促进前沿、专业的学术知识推广,推动多肽在生物医学材料等领域的研究与应用。公司产品广泛应用于药物研发,抗体的制备(包括单抗与双抗),荧光分子探针的构建以及细胞透膜研究、活体成像、新型材料研发和质谱分析等研究领域;目前我们已经与军科院、天津药物研究所、中科院物理研究所等研究机构,清华、北大、复旦等高校,以及国外著名药企建立了长期友好的合作交流关系。  国肽生物以科技创新为动力,提升企业核心竞争力。公司拥有一支由行业内领军人才组成的研发创新团队,硕士研发人员占企业员工总数的15%以上,同时公司还邀请国内外顶级生物医学科学家担任科学顾问。公司成立首年,通过多肽生产设施的精细改良、多肽研发工艺的自主创新,突破了多肽产品快速化、规模化生产技术瓶颈,获得了7项实用新型专利和2项发明专利。  国肽生物公司配备了一流的多肽合成、纯化、冻干、质量检测与分析等精密仪器,从美国、日本等国引进了LC-MS液质联用仪、超高压液相色谱、紫外分光光度计等专用设备,以多肽合成与研发为核心,搭建起全产业链产品分析检测平台,为广大客户提供专业可靠的多肽及相关产品理化性质分析,纯度分析,质谱分析,CHN元素含量分析,红外,紫外光谱分析等分析检测服务。  国肽生物的创立,源自于公司对多肽行业未来发展的认同,公司秉承“质量第一,服务至上”的经营理念,带着行业责任感与使命感,立志于在全球范围内树立一个民族品牌,重新引领肽行业的健康、快速发展。合肥国肽生物官网:http://www.bankpeptide.com

询价

多肽合成又叫肽链合成,是一个固相合成顺序一般从C端(羧基端)向N端(氨基端)合成。过去的多肽合成是在溶液中进行的称为液相合成法。多肽的合成主要分为两条途径:化学合成多肽和生物合成多肽。多肽合成的原理多肽合成就是如何把各种氨基酸单位按照天然物的氨基酸排列顺序和连接方式连接起来。由于氨基酸在中性条件下是以分子内的两性离子形式(H3+NCH(R)COO-)存在,因此,氨基酸之间直接缩合形成酰胺键的反应在一般条件下是难于进行的。氨基酸酯的反应活性较高。在100℃下加热或者室温下长时间放置都能聚合生成肽酯,但反应并没有定向性,两种氨基酸a1和a2的酯在聚合时将生成a1a2…、a1a1…、a2a1…等各种任意顺序的混合物。为了得到具有特定顺序的合成多肽,采用任意聚合的方法是行不通的,而只能采用逐步缩合的定向多肽合成方法。一般是如下式所示,即先将不需要反应的氨基或羧基用适当的基团暂时保护起来,然后再进行连接反应,以保证多肽合成的定向进行。合肥国肽生物官网:http://www.bankpeptide.com式中的X和Q分别为氨基和羧基的保护基,它不仅可以防止乱接副反应的发生,还具有能消除氨基酸的两性离子形式,并使之易溶于有机溶剂的作用。Q在有的情况下也可以不是共价连接的基团,而是由有机强碱(如三乙胺)同氨基酸的羧基氢离子组成的有机阳离子。Y为一强的吸电子基团,它能使羧基活化,而有利于另一氨基酸的自由氨基,对其活化羧基的羧基碳原子进行亲核进攻生成酰胺键。由此所得的连接产物是N端和C端都带有保护基的保护肽,要脱去保护基后才能得到自由的肽。如果肽链不是到此为止,而是还需要从N端或C端延长肽链的话,则可以先选择性地脱去X或Q,然后再同新的N保护氨基酸(或肽)或C保护的氨基酸(或肽)进行第二次连接,并依次不断重复下去,直到所需要的肽链长度为止。对于长肽的多肽合成来说,一般有逐步增长和片段缩合两种伸长肽链的方式,前者是由起始的氨基酸(或肽)开始。每连接一次,接长一个氨基酸,后者则是用N保护肽同C保护肽缩合来得到两者长度相加的新的长肽链。对于多肽合成中含有谷氨酸、天冬氨酸、赖氨酸、精氨酸、组氨酸、半胱氨酸等等带侧链功能团的氨基酸的肽来说,为了避免由于侧链功能团所带来的副反应,一般也需要用适当的保护基将侧链基团暂时保护起来。多肽合成方法分类多肽的合成主要分为两条途径:化学合成多肽和生物合成多肽。化学合成主要是以氨基酸与氨基酸之间缩合的形式来进行。在合成含有特定顺序的多肽时,由于多肽合成原料中含有官能度大于2的氨基酸单体,多肽合成时应将不需要反应的基团暂时保护起来,方可进行成肽反应,这样保证了多肽合成目标产物的定向性。多肽的化学合成又分为液相合成和固相合成。多肽液相合成主要分为逐步合成和片段组合两种策略。逐步合成简洁迅速,可用于各种生物活性多肽片段的合成。片段组合法主要包括天然化学连接和施陶丁格连接。近年,多肽液相片段合成法发展迅速,在多肽和蛋白质合成领域已取得了重大突破。在多肽片段合成法中,根据多肽片段的化学特定性或化学选择性,多肽片段能够自发进行连接,得到目标多肽。因为多肽片段含有的氨基酸残基相对较少,所以纯度较高,且易于纯化。多肽的生物合成方法主要包括发酵法、酶解法,随着生物工程技术的发展,以DNA重组技术为主导的基因工程法也被应用于多肽的合成。多肽的固相合成多肽的合成是氨基酸重复添加的过程,通常从C端向N端(氨基端)进行合成。多肽固相合成的原理是将目的肽的第一个氨基酸C端通过共价键与固相载体连接,再以该氨基酸N端为合成起点,经过脱去氨基保护基和过量的已活化的第二个氨基酸进行反应,接长肽链,重复操作,达到理想的合成肽链长度,最后将肽链从树脂上裂解下来,分离纯化,获得目标多肽。1、Boc多肽合成法Boc方法是经典的多肽固相合成法,以Boc作为氨基酸α-氨基的保护基,苄醇类作为侧链保护基,Boc的脱除通常采用三氟乙酸(TFA)进行。多肽合成时将已用Boc保护好的N-α-氨基酸共价交联到树脂上,TFA切除Boc保护基,N端用弱碱中和。肽链的延长通过二环己基碳二亚胺(DCC)活化、偶联进行,最终采用强酸氢氟酸(HF)法或三氟甲磺酸(TFMSA)将合成的目标多肽从树脂上解离。在Boc多肽合成法中,为了便于下一步的多肽合成,反复用酸进行脱保护,一些副反应被带入实验中,例如多肽容易从树脂上切除下来,氨基酸侧链在酸性条件不稳定等。2、Fmoc多肽合成法Carpino和Han以Boc多肽合成法为基础发展起来一种多肽固相合成的新方法——Fmoc多肽合成法。Fmoc多肽合成法以Fmoc作为氨基酸α-氨基的保护基。其优势为在酸性条件下是稳定的,不受TFA等试剂的影响,应用温和的碱处理可脱保护,所以侧链可用易于酸脱除的Boc保护基进行保护。肽段的最后切除可采用TFA/二氯甲烷(DCM)从树脂上定量完成,避免了采用强酸。同时,与Boc法相比,Fmoc法反应条件温和,副反应少,产率高,并且Fmoc基团本身具有特征性紫外吸收,易于监测控制反应的进行。Fmoc法在多肽固相合成领域应用越来越广泛。多肽液相分段合成随着多肽合成的发展,多肽液相分段合成(即多肽片段在溶液中依据其化学专一性或化学选择性,自发连接成长肽的合成方法)在多肽合成领域中的作用越来越突出。其特点在于可以用于长肽的合成,并且纯度高,易于纯化。多肽液相分段合成主要分为天然化学连接和施陶丁格连接。天然化学连接是多肽分段合成的基础方法,局限在于所合成的多肽必须含半光氨酸(Cys)残基,因而限定了天然化学连接方法的应用范围。天然化学连接方法的延伸包括化学区域选择连接、可除去辅助基连接、光敏感辅助基连接。施陶丁格连接方法是另一种基础的片段连接方法,其为多肽片段连接途径开拓了更广阔的思路。正交化学连接方法是施陶丁格连接方法的延伸,通过简化膦硫酯辅助基来提高片段间的缩合率。其他多肽合成方法1、氨基酸的羧内酸酐法(NCA)氨基酸的羧内酸酐的氨基保护基也可活化羧基。NCA的原理:在碱性条件下,氨基酸阴离子与NCA形成一个更稳定的氨基甲酸酯类离子,在酸化时该离子失去二氧化碳,生成二肽。生成的二肽又与其他的NCA结合,反复进行。NCA适用于短链肽片段的多肽合成,其周期短、操作简单、成本低、得到产物分子量高,在目前多肽合成中所占比例较大,技术也较为通用。2、组合化学法20世纪80年代,以固相多肽合成为基础提出了组合化学法,即氨基酸的构建单元通过组合的方式进行连接,合成出含有大量化合物的化学库,并从中筛选出具有某种理化性质或药理活性化合物的一套多肽合成策略和筛选方案。组合化学法的多肽合成策略主要包括:混合-均分法、迭代法、光控定位组合库法、茶叶袋法等。组合化学法的最大优点在于可同时合成多种化合物,并且能最大限度地筛选各种新化合物及其异构体。3、酶解法酶解法是用生物酶降解植物蛋白质和动物蛋白质,获得小分子多肽。酶解法因其多肽产量低、投资大、周期长、污染严重,未能实现工业化生产。酶解法获得的多肽能够保留蛋白质原有的营养价值,并且可以获得比原蛋白质更多的功能,更加绿色,更加健康。4、基因工程法基因工程法主要以DNA重组技术为基础,通过合适的DNA模板来控制多肽的序列合成。有研究者通过基因工程法获得了准弹性蛋白-聚缬氨酸-脯氨酸-甘氨酸-缬氨酸-甘氨酸肽(VPGVG)。利用基因工程技术生产的活性多肽还有肽类抗生素、干扰素类、白介素类、生长因子类、肿瘤坏死因子、人生长激素,血液中凝血因子、促红细胞生成素,组织非蛋白纤溶酶原等。基因工程法合成多肽具有表达定向性强,安全卫生,原料来源广泛和成本低等优点,但因存在高效表达,不易分离,产率低的问题,难以实现规模化生产。5、发酵法发酵法是从微生物代谢产物中获得多肽的方法。虽然发酵法的成本低,但其应用范围较窄,因为现在微生物能够独立合成的聚氨基酸只有ε-聚赖氨酸(ε-PL)、γ-聚谷氨酸(γ-PGA)和蓝细菌肽。

询价

同位素技术,同位素标记随着多肽在生物医药领域越来越广泛和深入的应用,标记和修饰性的多肽种类的需求越来越多,质量需求也越来越高。稳定同位素标记就是其中典型的一种。稳定同位素标记示踪,可以实现肽类代谢途径研究,能够随时追踪含有同位素标记的多肽在体内或体外位置及数量的变化情况。同位素标记具有高灵敏度、定位简单、定量准确等优点,使得同位素修饰在医学及生物化学领域得到越来越广泛的关注。目前我们公司合成的同位素标记多肽主要为C13,N15两种同位素标记的多肽,通过直接在肽链中引入同位素标记的氨基酸达到有效标记整条肽链的目的,常用的同位素标记的氨基酸有Tyr,Thr,Lys,Arg,Glu等。同位素标记的多肽与普通肽的区别在于其结构中某一个或几个氨基酸中的C被C13取代或者N被N15取代。专业的团队,一流的合成纯化技术,严谨的工作态度,严格的质量要求,是我们能够满足客户对同位素标记多肽的不同纯度要求的重要保障。与此同时,同位素标记多肽的原料(同位素标记的氨基酸)价格昂贵,使得我们合成成本高,这就直接导致了这种多肽价格的高昂,秉着客户至上,竭力满足客户需求的经营理念,我们国肽生物提供微克,毫克到千克级别的质量服务。成功案例:序列WVQTLSEQVQEELLSSQVTQEL[13C-15N-R]HPLC分析:MS分析:合肥国肽生物官网:http://www.bankpeptide.com

询价

合成多肽是α-氨基酸以肽链连接在一起而形成的化合物,它也是蛋白质水解的中间产物。 由两个氨基酸分子脱水缩合而成的化合物叫做二肽,同理类推还有三肽、四肽、五肽等。合成多肽方法分类多肽的合成主要分为两条途径:化学合成多肽和生物合成多肽。化学合成主要是以氨基酸与氨基酸之间缩合的形式来进行。在合成含有特定顺序的多肽时,由于多肽合成原料中含有官能度大于2的氨基酸单体,多肽合成时应将不需要反应的基团暂时保护起来,方可进行成肽反应,这样保证了多肽合成目标产物的定向性。多肽的化学合成又分为液相合成和固相合成。多肽液相合成主要分为逐步合成和片段组合两种策略。逐步合成简洁迅速,可用于各种生物活性多肽片段的合成。片段组合法主要包括天然化学连接和施陶丁格连接。近年,多肽液相片段合成法发展迅速,在多肽和蛋白质合成领域已取得了重大突破。在多肽片段合成法中,根据多肽片段的化学特定性或化学选择性,多肽片段能够自发进行连接,得到目标多肽。因为多肽片段含有的氨基酸残基相对较少,所以纯度较高,且易于纯化。多肽的生物合成方法主要包括发酵法、酶解法,随着生物工程技术的发展,以DNA重组技术为主导的基因工程法也被应用于多肽的合成。合成多肽的原理  多肽合成就是如何把各种氨基酸单位按照天然物的氨基酸排列顺序和连接方式连接起来。由于氨基酸在中性条件下是以分子内的两性离子形式(H3+NCH(R)COO-)存在,因此,氨基酸之间直接缩合形成酰胺键的反应在一般条件下是难于进行的。氨基酸酯的反应活性较高。在100℃下加热或者室温下长时间放置都能聚合生成肽酯,但反应并没有定向性,两种氨基酸a1和a2的酯在聚合时将生成a1a2…、a1a1…、a2a1…等各种任意顺序的混合物。  为了得到具有特定顺序的合成多肽,采用任意聚合的方法是行不通的,而只能采用逐步缩合的定向多肽合成方法。一般是如下式所示,即先将不需要反应的氨基或羧基用适当的基团暂时保护起来,然后再进行连接反应,以保证多肽合成的定向进行。  式中的X和Q分别为氨基和羧基的保护基,它不仅可以防止乱接副反应的发生,还具有能消除氨基酸的两性离子形式,并使之易溶于有机溶剂的作用。  Q在有的情况下也可以不是共价连接的基团,而是由有机强碱(如三乙胺)同氨基酸的羧基氢离子组成的有机阳离子。Y为一强的吸电子基团,它能使羧基活化,而有利于另一氨基酸的自由氨基,对其活化羧基的羧基碳原子进行亲核进攻生成酰胺键。  由此所得的连接产物是N端和C端都带有保护基的保护肽,要脱去保护基后才能得到自由的肽。如果肽链不是到此为止,而是还需要从N端或C端延长肽链的话,则可以先选择性地脱去X或Q,然后再同新的N保护氨基酸(或肽)或C保护的氨基酸(或肽)进行第二次连接,并依次不断重复下去,直到所需要的肽链长度为止。  对于长肽的多肽合成来说,一般有逐步增长和片段缩合两种伸长肽链的方式,前者是由起始的氨基酸(或肽)开始。每连接一次,接长一个氨基酸,后者则是用N保护肽同C保护肽缩合来得到两者长度相加的新的长肽链。  对于多肽合成中含有谷氨酸、天冬氨酸、赖氨酸、精氨酸、组氨酸、半胱氨酸等等带侧链功能团的氨基酸的肽来说,为了避免由于侧链功能团所带来的副反应,一般也需要用适当的保护基将侧链基团暂时保护起来。  合肥国肽生物官网:http://www.bankpeptide.com

询价

多肽的固相合成  多肽的合成是氨基酸重复添加的过程,通常从C端向N端(氨基端)进行合成。多肽固相合成的原理是将目的肽的第一个氨基酸C端通过共价键与固相载体连接,再以该氨基酸N端为合成起点,经过脱去氨基保护基和过量的已活化的第二个氨基酸进行反应,接长肽链,重复操作,达到理想的合成肽链长度,最后将肽链从树脂上裂解下来,分离纯化,获得目标多肽。1、Boc多肽合成法  Boc方法是经典的多肽固相合成法,以Boc作为氨基酸α-氨基的保护基,苄醇类作为侧链保护基,Boc的脱除通常采用三氟乙酸(TFA)进行。多肽合成时将已用Boc保护好的N-α-氨基酸共价交联到树脂上,TFA切除Boc保护基,N端用弱碱中和。  肽链的延长通过二环己基碳二亚胺(DCC)活化、偶联进行,最终采用强酸氢氟酸(HF)法或三氟甲磺酸(TFMSA)将合成的目标多肽从树脂上解离。在Boc多肽合成法中,为了便于下一步的多肽合成,反复用酸进行脱保护,一些副反应被带入实验中,例如多肽容易从树脂上切除下来,氨基酸侧链在酸性条件不稳定等。2、Fmoc多肽合成法  Carpino和Han以Boc多肽合成法为基础发展起来一种多肽固相合成的新方法——Fmoc多肽合成法。  Fmoc多肽合成法以Fmoc作为氨基酸α-氨基的保护基。其优势为在酸性条件下是稳定的,不受TFA等试剂的影响,应用温和的碱处理可脱保护,所以侧链可用易于酸脱除的Boc保护基进行保护。  肽段的最后切除可采用TFA/二氯甲烷(DCM)从树脂上定量完成,避免了采用强酸。同时,与Boc法相比,Fmoc法反应条件温和,副反应少,产率高,并且Fmoc基团本身具有特征性紫外吸收,易于监测控制反应的进行。Fmoc法在多肽固相合成领域应用越来越广泛。我们主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。合肥国肽生物官网:http://www.bankpeptide.com

询价

多肽化学合成化学合成多肽药物:多肽和蛋白质类药物指用于预防、治疗和诊断的多肽和蛋白质类物质生物药物。多肽是α-氨基酸以肽链连接在一起而形成的化合物,它也是蛋白质水解的中间产物。N条多肽链按一定的空间结构缠绕纠结就构成了蛋白质。大分子蛋白质水解会生成多肽。此类药品为生化制剂,对于储存运输环境要求相对严格。多肽和蛋白质类生物药物按药物的结构分类可分为合肥国肽生物官网搜集整理:氨基酸及其衍生物类药物、多肽和蛋白质类药物、酶和辅酶类药物、核酸及其降解物和衍生物类药物、糖类药物、脂类药物、细胞生长因子和生物制品类药物。点击化学多肽炔基多肽_Alkyne-PEG5-peptide国肽生物开发的炔基多肽主要用于点击化学,和带叠氮多肽或者带叠氮基的小分子形成1,4-取代的-1,2,3-三唑五元环,反应中需要铜催化,反应温和而且效率非常高,不需要保护基团,在很多情况下反应后不需要纯化,炔基多肽和叠氮多肽对生物分子和在水环境中是惰性的,反应后的1,2,3-三唑五元环,与在自然界中发现的普遍存在的酰胺部分具有相似性,但与酰胺不同,不易被切割,另外它非常稳定几乎不会被氧化。该反应由著名的诺贝尔奖获得者K. Barry Sharpless, Ph.D.( 巴里·夏普莱斯)发明,在多肽新药发现上,可以大大加快速度。我们主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。合肥国肽生物官网:http://www.bankpeptide.com

询价

  多肽定制一般指人工多肽合成的一种服务,指根据客户的需要,如序列、纯度、分子量等的不同要求,进行加工合成的满足特定需要的多肽合成服务。通过质谱仪进行分子量的确认,确定粗品MS的正否与否,再将粗品通过高效液相色谱即HPLC纯化,得到精品肽。根据不同实验,可以选择不同的多肽纯度,原则上是纯度越高,价格越高。定制多肽种类  一、特殊类别多肽:订书肽、同位素标记多肽、磷酸肽、环肽、二硫键多肽、糖肽、药物肽、化妆品肽等  二、修饰肽:磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC、CMK、FMK等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、RGD环肽等  三、特殊氨基酸多肽:可以将种类繁多的非天然氨基酸合成到多肽上。  四、合成方法:多肽固相合成、多肽液相合成、点击化学、一锅法合成等  五、多肽项目外包服务:您提供实验路线或者产品大致结构,公司专员设计好后,遵循先小试后放大的原则,给您生产多肽产品。什么是多肽  肽(peptide)  是α-氨基酸以肽键连接在一起而形成的化合物,它也是蛋白质水解的中间产物。  肽的区分  一般肽中含有的氨基酸的数目为二到九,根据肽中氨基酸的数量的不同,肽有多种不同的称呼:由两个氨基酸分子脱水缩合而成的化合物叫做二肽,同理类推还有三肽、四肽、五肽等,一直到九肽。通常由10~100个氨基酸分子脱水缩合而成的化合物叫多肽,它们的分子量低于10,000Da(dalton,道尔顿),能通过半透膜,不能被三氯乙酸及硫酸铵等所沉淀。也有文献把由2~10个氨基酸组成的肽称为寡肽(oligopeptide,小分子肽);10~50个氨基酸组成的肽称为多肽;由50个以上的氨基酸组成的肽就称为蛋白质,换而言之,蛋白质有时也被称为多肽。  由多个分子α-氨基酸的-NH2与-COOH互相缩合失水后形成10个肽键(-CONH-)以上的长链化合物。它包括多种在生物机体中具一定生理活性的化合物,可以从动物组织中提取,也可以人工合成。蛋白质即是以各种氨基酸按一定顺序以肽键形成的长链肽,通过多种次级键交联结合而成的高分子化合物,蛋白质具有复杂的四级结构,通过不同程度的水解,破析结构可获得包括多肽等在内的多级产物:蛋白质→蛋白脉(proteose)→蛋白胨(peptone)→多肽→寡肽→氨基酸。这同时也表明了蛋白质的合成途径。因此,借人工合成多肽,不仅可用于生化制药工业,还可用来研究阐明蛋白质的合成途径及其结构。我们主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。合肥国肽生物官网:http://www.bankpeptide.com

询价

多肽是α-氨基酸以肽键连接在一起而形成的化合物,是蛋白质水解的中间产物。由两个氨基酸分子脱水缩合而成的化合物叫做二肽,同理类推还有三肽、四肽、五肽等。通常由10~100氨基酸分子脱水缩合而成的化合物叫多肽,它们的分子量低于10,000Da(Dalton,道尔顿),能透过半透膜,不被三氯乙酸及硫酸铵所沉淀。也有文献把由2~10个氨基酸组成的肽称为寡肽(小分子肽);10~50个氨基酸组成的肽称为多肽;由50个以上的氨基酸组成的肽就称为蛋白质。生物体中广泛存在的一类生物大分子,由核酸编码的α氨基酸之间通过α氨基和α羧基形成的肽键连接而成的肽链,经翻译后加工而生成的具有特定立体结构的、有活性的大分子。是α—氨基酸按一定顺序结合形成一条多肽链,再由一条或一条以上的多肽链按照其特定方式结合合而成的高分子化合物。我们主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。合肥国肽生物官网:http://www.bankpeptide.com

询价

多肽合成是一个固相合成顺序一般从 C端(羧基端)向N端(氨基端)合成。多肽固相合成的原理是将目的肽的第一个氨基酸C端通过共价键与固相载体连接,再以该氨基酸N端为合成起点,经过脱去氨基保护基和过量的已活化的第二个氨基酸进行反应,接长肽链,重复操作,达到理想的合成肽链长度,最后将肽链从树脂上裂解下来,分离纯化,获得目标多肽。固相合成方法有两种,即Fmoc和tBoc。由于Fmoc比tBoc存在很多优势,现在大多采用Fmoc法合成。(1)具体合成由下列几个循环组成:1. 去保护:Fmoc保护的柱子和单体必须用一种碱性溶剂(piperidine)去 除氨基的保护基团。2. 激活和交联:下一个氨基酸的羧基被一种活化剂所活化。活化的单体与游离的氨基反应交联,形成肽键。在此步骤使用大量的超浓度试剂驱使反应完成。循环:这两步反应反复循环直到合成完成。3. 洗脱和脱保护:多肽从柱上洗脱下来,其保护基团被一种脱保护剂(TFA) 洗脱和脱保护。(2)树脂的选择及氨基酸的固定将固相合成与其他技术分开来的最主要的特征是固相载体,能用于多肽合成的固相载体必须满足如下要求:必须包含反应位点(或反应基团),以使肽链连在这些位点上,并在以后除去;必须对合成过程中的物理和化学条件稳定;载体必须允许在不断增长的肽链和试剂之间快速的、不受阻碍的接触;另外,载体必须允许提供足够的连接点,以使每单位体积的载体给出有用产量的肽,并且必须尽量减少被载体束缚的肽链之间的相互作用。用于固相法合成多肽的高分子载体主要有三类:聚苯乙烯-苯二乙烯交联树脂、聚丙烯酰胺、聚乙烯-乙二醇类树脂及衍生物,这些树脂只有导入反应基团,才能直接连上(第一个)氨基酸。根据所导入反应基团的不同,又把这些树脂及树脂衍生物分为氯甲基树脂、羧基树脂、氨基树脂或酰肼型树脂。BOC合成法通常选择氯甲基树脂,如Merrifield树脂;FMOC合成法通常选择羧基树脂如王氏树脂。氨基酸的固定主要是通过保护氨基酸的羧基同树脂的反应基团之间形成的共价键来实现的,形成共价键的方法有多种:氯甲基树脂,通常先制得保护氨基酸的四甲铵盐或钠盐、钾盐、铯盐,然后在适当温度下,直接同树脂反应或在合适的有机溶剂如二氧六环、DMF或DMSO中反应;羧基树脂,则通常加入适当的缩合剂如DCC或羧基二咪唑,使被保护氨基酸与树脂形成共酯以完成氨基酸的固定;氨基树脂或酰肼型树脂,却是加入适当的缩合剂如DCC后,通过保护氨基酸与树脂之间形成的酰胺键来完成氨基酸的固定。我们主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。合肥国肽生物官网:http://www.bankpeptide.com

询价

KLH/BSA/Ovalbumin etc 偶联蛋白  小肽/半抗原必须耦合到载体蛋白(KLH,BSA,Ova),才可以获得高效的抗体。一般来说,多肽可以与蛋白偶联的条件如下:1.有一个自由的氨基或羧基。2.半胱氨酸上的-SH也可以与载体蛋白偶联目前我公司提供高质量的偶联载体蛋白(KLH,BSA,OVA)。  载体蛋白KLH,BSA,OVA偶联-多肽修饰肽-载体蛋白偶联多用于制备抗多肽类抗体,单独的多肽通常太小不足以激起充分的免疫反应,而带有很多抗原表位的载体蛋白有利于刺激辅助性T细胞,进一步诱导B细胞免疫反应。  免疫系统是将肽-蛋白作为一个整体来激起免疫反应的,因而产生的抗体中有针对多肽的,有针对链接剂的,也有针对载体蛋白的。其中最常见的载体蛋白有如下几种:  KLH(KeyholeLimpetHemocyanin),即血蓝蛋白,是在某些软体动物、节肢动物(蜘蛛和甲壳虫)的血淋巴中发现的一种游离的蓝色呼吸色素。血蓝蛋白含两个直接连接多肽链的铜离子,与含铁的血红蛋白类似,它易于氧结合,也易与氧解离,是已知的惟一可与氧可逆结合的铜蛋白,氧化时呈青绿色,还原时呈白色。其分子量450000~130000。由于KLH比BSA有更高的免疫原性,因而是最常被选用的载体蛋白。  BSA(BovineSerumAlbumin),即牛血清白蛋白,属于最稳定的和可溶的白蛋白。其分子量为67x103Da(含有59个Lys)。大约有30-35个主要氨基可用于与链接剂发生共轭反应,使得BSA成为一种很流行的弱抗原化合物载体蛋白。  BSA的不利之处在于在很多实验中,它被当作封闭剂使用,如果多肽-BSA偶联物的抗血清用于这样的检测分析中,通常会出现假阳性,因为这些血清含有抗BSA的抗体。  OVA(Ovalbumin),即鸡卵白蛋白,分子量为45x103Da。它可作为第二载体蛋白去验证抗体是否特异性地只针对多肽而并非载体蛋白(如BSA)。  巯基修饰(通过Cys的侧链)用于与KLH、BSA或OVA发生共轭反应  所有携带巯基反应的功能基团经修饰都可被用来发生共轭反应。其中最常见的有以下几种:  碘乙酰胺(Iodoacetamide)  马来酰亚胺(Maleimide)  烷基卤(Alkylhalide)合肥国肽生物官网:http://www.bankpeptide.com

询价

专业提供RGD环肽定制服务!RGD   Arg-Gly-AspRGDS   Arg-Gly-Asp-SerGRGDS   Gly-Arg-Gly-Asp-SerGRGES   H-Gly-Arg-Gly-Glu-Ser-OHGRGDNP   H-Gly-Arg-Gly-Asp-Asn-Pro-OHc(RGDfC)   cyclo (Arg-Gly-Asp-d-Phe-Cys)c(RADfC)   cyclo (Arg-Ala-Asp-d-Phe-Cys)c(RGDfE)   cyclo (Arg-Gly-Asp-d-Phe-Glu)c(RGDfK)   cyclo (Arg-Gly-Asp-d-Phe-Lys)c(RADfK)   cyclo (Arg-Ala-Asp-d-Phe-Lys)c(RGDfV)   cyclo (Arg-Gly-Asp-d-Phe-Val)c(RADfV)   cyclo (Arg-Ala-Asp-d-Phe-Val)c(RGDyC)   cyclo (Arg-Gly-Asp-D-Tyr-Cys)c(RGEfK)   cyclo (Arg-Gly-Glu-d-Phe-Lys)c(RGDyE)   cyclo (Arg-Gly-Asp-D-Tyr-Glu)c(RADyK)   cyclo (Arg-Ala-Asp-d-Tyr-Lys)E[c(RGDfK)]2   Glu[cyclo (Arg-Gly-Asp-d-Phe-Lys)]2E[c(RGDyK)]2   Glu[cyclo (Arg-Gly-Asp-d-Tyr-Lys)]2c(RGDfK(PEG))   cyclo [Arg-Gly-Asp-d-Phe-Lys(PEG)]c[RADfK(PEG-PEG)]   c[RADfK(PEG-PEG)]c[RGDfK(Biotin)]   cyclo [Arg-Gly-Asp-d-Phe-Lys(Biotin)]c[RGDfK(Biotin-PEG-PEG)]   cyclo [Arg-Gly-Asp-d-Phe-Lys(Biotin-PEG-PEG)]c[RGDfK (Ac-SCH2CO)]   c[RGDfK (Ac-SCH2CO)]DOTA-E-[c(RGDfK)2]   DOTA-Glu-[cyclo (Arg-Gly-Asp-d-Phe-Lys)]HYNIC-RGD            cyclo [Arg-Gly-Asp-d-Phe-Lys(HYNIC)]我们主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。合肥国肽生物官网:http://www.bankpeptide.com

询价

稳定同位素标记技术随着多肽在生物医药领域越来越广泛和深入的应用,标记和修饰性的多肽种类的需求越来越多,质量需求也越来越高。稳定同位素标记就是其中典型的一种。稳定同位素标记示踪,可以实现肽类代谢途径研究,能够随时追踪含有同位素标记的多肽在体内或体外位置及数量的变化情况。同位素标记具有高灵敏度、定位简单、定量准确等优点,使得同位素修饰在医学及生物化学领域得到越来越广泛的关注。目前我们公司合成的同位素标记多肽主要为C13,N15两种同位素标记的多肽,通过直接在肽链中引入同位素标记的氨基酸达到有效标记整条肽链的目的,常用的同位素标记的氨基酸有Tyr,Thr,Lys,Arg,Glu等。同位素标记的多肽与普通肽的区别在于其结构中某一个或几个氨基酸中的C被C13取代或者N被N15取代。专业的团队,一流的合成纯化技术,严谨的工作态度,严格的质量要求,是我们能够满足客户对同位素标记多肽的不同纯度要求的重要保障。与此同时,同位素标记多肽的原料(同位素标记的氨基酸)价格昂贵,使得我们合成成本高,这就直接导致了这种多肽价格的高昂,秉着客户至上,竭力满足客户需求的经营理念,我们国肽生物提供微克,毫克到千克级别的质量服务。成功案例:序列WVQTLSEQVQEELLSSQVTQEL[13C-15N-R]HPLC分析:MS分析:合肥国肽生物官网:http://www.bankpeptide.com

询价

稳定同位素标记技术 随着多肽在生物医药领域越来越广泛和深入的应用,标记和修饰性的多肽种类的需求越来越多,质量需求也越来越高。稳定同位素标记就是其中典型的一种。稳定同位素标记示踪,可以实现肽类代谢途径研究,能够随时追踪含有同位素标记的多肽在体内或体外位置及数量的变化情况。同位素标记具有高灵敏度、定位简单、定量准确等优点,使得同位素修饰在医学及生物化学领域得到越来越广泛的关注。目前我们公司合成的同位素标记多肽主要为C13,N15两种同位素标记的多肽,通过直接在肽链中引入同位素标记的氨基酸达到有效标记整条肽链的目的,常用的同位素标记的氨基酸有Tyr,Thr,Lys,Arg,Glu等。同位素标记的多肽与普通肽的区别在于其结构中某一个或几个氨基酸中的C被C13取代或者N被N15取代。专业的团队,一流的合成纯化技术,严谨的工作态度,严格的质量要求,是我们能够满足客户对同位素标记多肽的不同纯度要求的重要保障。与此同时,同位素标记多肽的原料(同位素标记的氨基酸)价格昂贵,使得我们合成成本高,这就直接导致了这种多肽价格的高昂,秉着客户至上,竭力满足客户需求的经营理念,我们国肽生物提供微克,毫克到千克级别的质量服务。成功案例:序列WVQTLSEQVQEELLSSQVTQEL[13C-15N-R]HPLC分析:MS分析:合肥国肽生物官网:http://www.bankpeptide.com

询价